ISE In-Depth Tutorial

8.2
Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design. Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREBUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

Copyright © 1995-2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their respective owners.
Preface

About This Tutorial

About the In-Depth Tutorial

This tutorial gives a description of the features and additions to Xilinx® ISE™ 8.2i. The primary focus of this tutorial is to show the relationship among the design entry tools, Xilinx and third-party tools, and the design implementation tools.

This guide is a learning tool for designers who are unfamiliar with the features of the ISE software or those wanting to refresh their skills and knowledge.

You may choose to follow one of three tutorial flows available in this document. For information about the tutorial flows, see “Tutorial Flows.”

Tutorial Contents

This guide covers the following topics.

- **Chapter 1, “Overview of ISE and Synthesis Tools,”** introduces you to the ISE primary user interface, Project Navigator, and the synthesis tools available for your design.

- **Chapter 2, “HDL-Based Design,”** guides you through a typical HDL-based design procedure using a design of a runner’s stopwatch.

- **Chapter 3, “Schematic-Based Design,”** explains many different facets of a schematic-based ISE design flow using a design of a runner’s stopwatch. This chapter also shows how to use ISE accessories such as StateCAD, Project Navigator, CORE Generator™, and ISE Text Editor.

- **Chapter 4, “Behavioral Simulation,”** explains how to use the ModelSim Simulator to simulate a design before design implementation to verify that the logic that you have created is correct.

- **Chapter 5, “Design Implementation,”** describes how to Translate, Map, Place, Route (Fit for CPLDs), and generate a Bit file for designs.

- **Chapter 6, “Timing Simulation,”** explains how to perform a timing simulation using the block and routing delay information from the routed design to give an accurate assessment of the behavior of the circuit under worst-case conditions.

- **Chapter 7, “iMPACT Tutorial”** explains how to program a device with a newly created design using the IMPACT configuration tool.
Tutorial Flows

This document contains three tutorial flows. In this section, the three tutorial flows are outlined and briefly described, in order to help you determine which sequence of chapters applies to your needs. The tutorial flows include:

- HDL Design Flow
- Schematic Design Flow
- Implementation-only Flow

HDL Design Flow

The HDL Design flow is as follows:

- **Chapter 2**, “HDL-Based Design”
- **Chapter 4**, “Behavioral Simulation”
 Note that behavioral simulation is optional; however, it is strongly recommended in this tutorial flow.
- **Chapter 5**, “Design Implementation”
- **Chapter 6**, “Timing Simulation”
 Note that timing simulation is optional; however, it is strongly recommended.
- **Chapter 7**, “iMPACT Tutorial”

Schematic Design Flow

The Schematic Design flow is as follows:

- **Chapter 3**, “Schematic-Based Design”
- **Chapter 4**, “Behavioral Simulation”
 Note that behavioral simulation is optional; however, it is strongly recommended in this tutorial flow.
- **Chapter 5**, “Design Implementation”
- **Chapter 6**, “Timing Simulation”
 Note that timing simulation is optional; however, it is strongly recommended.
- **Chapter 7**, “iMPACT Tutorial”

Implementation-only Flow

The Implementation-only flow is as follows:

- **Chapter 5**, “Design Implementation”
- **Chapter 6**, “Timing Simulation”
 Note that timing simulation is optional; however, it is strongly recommended.
- **Chapter 7**, “iMPACT Tutorial”
Additional Resources

To find additional documentation, see the Xilinx website at:

To search the Answer Database of silicon, software, and IP questions and answers, or to create a technical support WebCase, see the Xilinx website at:

Table of Contents

Preface: About This Tutorial
- About the In-Depth Tutorial ... 3
- Tutorial Contents .. 3
- Tutorial Flows ... 4
 - HDL Design Flow ... 4
 - Schematic Design Flow .. 4
 - Implementation-only Flow ... 4
- Additional Resources ... 5

Chapter 1: Overview of ISE and Synthesis Tools
- Overview of ISE ... 13
 - Project Navigator Interface .. 13
 - Sources Window .. 14
 - Sources Tab .. 14
 - Snapshots Tab ... 15
 - Libraries Tab ... 15
 - Processes Window .. 15
 - Processes Tab ... 15
 - Transcript Window ... 16
 - Error Navigation to Source ... 16
 - Error Navigation to Solution Record 16
 - Workspace ... 17
 - Design Summary ... 17
 - Text Editor .. 17
 - ISE Simulator / Waveform Editor 17
 - Schematic Editor ... 17
- Using Snapshots and Archives .. 17
 - Using Snapshots .. 17
 - Creating a Snapshot ... 17
 - Restoring a Snapshot .. 17
 - Viewing a Snapshot .. 18
 - Using Project Archives .. 18
 - Creating an Archive .. 18
 - Restoring an Archive .. 18
- Overview of Synthesis Tools .. 18
 - LeonardoSpectrum ... 18
 - Process Properties .. 19
 - Precision Synthesis ... 19
 - Process Properties .. 19
 - Synplify/Synplify Pro .. 20
 - Process Properties .. 20
 - Xilinx Synthesis Technology (XST) 21
 - Process Properties .. 21
Chapter 2: HDL-Based Design

Overview of HDL-Based Design ... 23
Getting Started ... 24
 Required Software ... 24
 Optional Software Requirements 24
 VHDL or Verilog? .. 24
 Installing the Tutorial Project Files 24
 Starting the ISE Software ... 25
 Creating a New Project ... 25
 Creating a New Project: Using the New Project Wizard 25
 Creating a New Project: Using a Tcl Script 27
 Stopping the Tutorial .. 27
Design Description .. 28
 Inputs .. 28
 Outputs .. 28
 Functional Blocks .. 28
Design Entry ... 29
 Adding Source Files ... 30
 Checking the Syntax ... 30
 Correcting HDL Errors ... 30
 Creating an HDL-Based Module 31
 Using the New Source Wizard and ISE Text Editor 31
 Using the Language Templates 34
 Adding a Language Template to Your File 35
 Creating a CORE Generator Module 36
 Creating a CORE Generator Module 36
 Instantiating the CORE Generator Module in the HDL Code 38
 Creating a DCM Module ... 41
 Using the DCM Wizard .. 41
 Instantiating the DCM1 Macro - VHDL Design 43
 Instantiating the DCM1 Macro - Verilog 44
Synthesizing the Design ... 45
 Synthesizing the Design using XST 46
 Entering Constraints .. 47
 Entering Synthesis Options .. 48
 Synthesizing the Design ... 48
 The RTL/Technology Viewer .. 48
 Synthesizing the Design using Synplify/Synplify Pro 49
 Examining Synthesis Results .. 50
 Synthesizing the Design using LeonardoSpectrum 51
 Entering Synthesis Options through ISE 52
 Synthesizing the Design Using Precision Synthesis 53
 Entering Synthesis Options through ISE 53
 The RTL/Technology Viewer .. 53

Chapter 3: Schematic-Based Design

Overview of Schematic-Based Design 55
Getting Started ... 55
 Required Software ... 55
 Installing the Tutorial Project Files 56
 Starting the ISE Software ... 56
Design Entry .. 62
Design Description .. 59
Creating a CORE Generator Module ... 73
Creating the State Machine Symbol ... 72
Creating the time_cnt Symbol .. 72
Creating the time_cnt Symbol .. 72
Creating a State Machine Module .. 75
Creating a State Machine Symbol .. 81
Creating a DCM Module .. 81
Creating the dcm1 Symbol .. 83
Creating an HDL-Based Module ... 84
Creating the hex2led Symbol .. 87
Placing the stmach, ten_cnt, clk_div_262k, DCM1, debounce, and hex2led Symbols ... 87
Hierarchy Push/Pop ... 89
Specifying Device Inputs/Outputs .. 90
Adding Input Pins .. 90
Adding I/O Markers and Net Names .. 90
Assigning Pin Locations .. 91
Completing the Schematic ... 91

Adding Input Pins .. 90
Adding a Language Template to Your File .. 86
Adding Net Names ... 70
Checking the Schematic ... 71
Saving the Schematic .. 72
Creating and Placing the time_cnt Symbol ... 72
Creating the time_cnt symbol ... 72
Placing the time_cnt Symbol .. 72
Creating a Core Generator Module .. 73
Creating a Schematic-Based Macro ... 63
Manipulating the Window View ... 63
Opening the Schematic File in the Xilinx Schematic Editor .. 62
Defining the time_cnt Schematic ... 64
Adding I/O Markers .. 64
Adding Components to time_cnt ... 65
Placing the Remaining Components .. 67
Correcting Mistakes ... 68
Drawing Wires .. 68
Adding Buses ... 68
Adding Bus Taps .. 69
Adding Net Names .. 70
Checking the Schematic ... 71
Saving the Schematic .. 72
Creating the State Machine HDL output file .. 80
Creating the State Machine Reset Condition .. 80
Creating the State Machine HDL output file .. 80
Creating the State Machine Symbol .. 81
Creating a DCM Module .. 81
Using the Clocking Wizard ... 81
Creating the dcm1 Symbol .. 83
Creating an HDL-Based Module ... 84
Using the New Source Wizard and ISE Text Editor ... 84
Using the Language Templates ... 86
Adding a Language Template to Your File .. 87
Creating the hex2led Symbol .. 87
Placing the stmach, ten_cnt, clk_div_262k, DCM1, debounce, and hex2led Symbols ... 87
Hierarchy Push/Pop ... 89
Specifying Device Inputs/Outputs .. 90
Adding Input Pins .. 90
Adding I/O Markers and Net Names .. 90
Assigning Pin Locations .. 91
Completing the Schematic ... 91
Chapter 4: Behavioral Simulation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Behavioral Simulation Flow</td>
<td>95</td>
</tr>
<tr>
<td>ModelSim Setup</td>
<td>95</td>
</tr>
<tr>
<td>ModelSim PE and SE</td>
<td>95</td>
</tr>
<tr>
<td>ModelSim Xilinx Edition</td>
<td>96</td>
</tr>
<tr>
<td>ISE Simulator Setup</td>
<td>96</td>
</tr>
<tr>
<td>Getting Started</td>
<td>96</td>
</tr>
<tr>
<td>Required Files</td>
<td>96</td>
</tr>
<tr>
<td>Design Files (VHDL, Verilog, or Schematic)</td>
<td>96</td>
</tr>
<tr>
<td>Test Bench File</td>
<td>96</td>
</tr>
<tr>
<td>Xilinx Simulation Libraries</td>
<td>96</td>
</tr>
<tr>
<td>Xilinx Simulation Libraries Updating the Xilinx Simulation Libraries</td>
<td>97</td>
</tr>
<tr>
<td>Mapping Simulation Libraries in the ModelSim.ini File</td>
<td>97</td>
</tr>
<tr>
<td>Adding an HDL Test Bench</td>
<td>98</td>
</tr>
<tr>
<td>Adding Tutorial Test Bench File</td>
<td>98</td>
</tr>
<tr>
<td>VHDL Design</td>
<td>98</td>
</tr>
<tr>
<td>Verilog Design</td>
<td>99</td>
</tr>
<tr>
<td>Behavioral Simulation Using ModelSim</td>
<td>99</td>
</tr>
<tr>
<td>Locating the Simulation Processes</td>
<td>99</td>
</tr>
<tr>
<td>Specifying Simulation Properties</td>
<td>100</td>
</tr>
<tr>
<td>Performing Simulation</td>
<td>101</td>
</tr>
<tr>
<td>Adding Signals</td>
<td>101</td>
</tr>
<tr>
<td>Adding Dividers</td>
<td>103</td>
</tr>
<tr>
<td>Rerunning Simulation</td>
<td>103</td>
</tr>
<tr>
<td>Analyzing the Signals</td>
<td>104</td>
</tr>
<tr>
<td>Saving the Simulation</td>
<td>105</td>
</tr>
<tr>
<td>Behavioral Simulation Using ISE Simulator</td>
<td>105</td>
</tr>
<tr>
<td>Locating the Simulation Processes</td>
<td>105</td>
</tr>
<tr>
<td>Specifying Simulation Properties</td>
<td>106</td>
</tr>
<tr>
<td>Performing Simulation</td>
<td>107</td>
</tr>
<tr>
<td>Adding Signals</td>
<td>107</td>
</tr>
<tr>
<td>Rerunning Simulation</td>
<td>108</td>
</tr>
<tr>
<td>Analyzing the Signals</td>
<td>109</td>
</tr>
<tr>
<td>Creating a Test Bench Waveform Using the Waveform Editor</td>
<td>109</td>
</tr>
<tr>
<td>Creating a Test Bench Waveform Source</td>
<td>109</td>
</tr>
<tr>
<td>Applying Stimulus</td>
<td>111</td>
</tr>
</tbody>
</table>

Chapter 5: Design Implementation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Design Implementation</td>
<td>113</td>
</tr>
<tr>
<td>Getting Started</td>
<td>114</td>
</tr>
<tr>
<td>Continuing from Design Entry</td>
<td>114</td>
</tr>
<tr>
<td>Starting from Design Implementation</td>
<td>114</td>
</tr>
<tr>
<td>Specifying Options</td>
<td>115</td>
</tr>
<tr>
<td>Creating Partitions</td>
<td>117</td>
</tr>
<tr>
<td>Creating Timing Constraints</td>
<td>118</td>
</tr>
<tr>
<td>Translating the Design</td>
<td>118</td>
</tr>
<tr>
<td>Using the Constraints Editor</td>
<td>119</td>
</tr>
<tr>
<td>Using the Pin-out Area Constraints Editor (PACE)</td>
<td>122</td>
</tr>
</tbody>
</table>
Chapter 6: Timing Simulation

Overview of Timing Simulation Flow ... 137

Getting Started ... 137
- Required Software ... 137
- Required Files .. 138
- Specifying a Simulator .. 138

Timing Simulation Using ModelSim ... 138
- Specifying Simulation Process Properties 139
- Performing Simulation ... 141
 - Adding Signals .. 141
 - Adding Dividers .. 143
 - Rerunning Simulation ... 144
 - Analyzing the Signals .. 144
 - Saving the Simulation .. 145

Timing Simulation Using Xilinx ISE Simulator 146
- Specifying Simulation Process Properties 146
- Performing Simulation ... 147
 - Adding Signals .. 147
 - Viewing Full Signal Names .. 149
 - Rerunning Simulation ... 150
 - Analyzing the Signals .. 150

Chapter 7: iMPACT Tutorial

Device Support .. 153

Download Cable Support ... 154
- Parallel Cable IV .. 154
- Platform Cable USB .. 154
- MultiPRO Cable .. 154

Configuration Mode Support ... 154

Getting Started .. 154
- Generating the Configuration Files 154
- Connecting the Cable ... 155
- Starting the Software ... 155
 - Opening iMPACT from Project Navigator 155
 - Opening iMPACT stand-alone 155

Creating a iMPACT New Project File 156
Using Boundary Scan Configuration Mode .. 156
 Specifying Boundary Scan Configuration Mode 156
 Assigning Configuration Files ... 158
 Saving the Project File .. 159
 Editing Preferences .. 159
 Performing Boundary Scan Operations .. 159

Troubleshooting Boundary Scan Configuration 162
 Verifying Cable Connection ... 162
 Verifying Chain Setup .. 163

Creating an SVF File .. 164
 Setting up Boundary Scan Chain .. 165
 JTAG chain setup for SVF generation ... 165
 Manual JTAG chain setup for SVF generation 165
 Writing to the SVF File ... 165
 Stop Writing to the SVF ... 167
 Playing back the SVF or XSVF file .. 167

Other Configuration Modes .. 167
 Slave Serial Configuration Mode .. 167
 SelectMAP Configuration Mode .. 168
Chapter 1

Overview of ISE and Synthesis Tools

This chapter includes the following sections:

- “Overview of ISE”
- “Using Snapshots and Archives”
- “Overview of Synthesis Tools”

Overview of ISE

ISE controls all aspects of the design flow. Through the Project Navigator interface, you can access all of the design entry and design implementation tools. You can also access the files and documents associated with your project. Project Navigator maintains a flat directory structure; therefore, you must maintain revision control through the use of snapshots.

Project Navigator Interface

The Project Navigator Interface is divided into four main subwindows, as seen in Figure 1-1. On the top left is the Sources window which hierarchically displays the elements included in the project. Beneath the Sources window is the Processes window, which displays available processes for the currently selected source. The third window at the bottom of the Project Navigator is the Transcript window which displays status messages, errors, and warnings and also contains interactive tabs for Tcl scripting and the Find in Files function. The fourth window to the right is a multi-document interface (MDI) window referred to as the Workspace. It enables you to view html reports, ASCII text files, schematics, and simulation waveforms. Each window may be resized, undocked from Project Navigator or moved to a new location within the main Project Navigator window. The default layout can always be restored by selecting View > Restore Default Layout. These windows are discussed in more detail in the following sections.
Chapter 1: Overview of ISE and Synthesis Tools

Sources Window

This window consists of three tabs which provide information for the user. Each tab is discussed in further detail below.

Sources Tab

The Sources tab displays the project name, the specified device, and user documents and design source files associated with the selected Design View. The Design View (“Sources for”) drop-down list at the top of the Sources tab allows you to view only those source files associated with the selected Design View, such as Synthesis/Implementation. In the “Number of” drop-down list, a Resources column and a Preserve Column are available for Designs that use Partitions. The use of partitions is covered in Chapter 5, “Design Implementation”.

Figure 1-1: Project Navigator
Each file in a Design View has an associated icon. The icon indicates the file type (HDL file, schematic, core, or text file, for example). For a complete list of possible source types and their associated icons, see the ISE™ Help. Select Help > ISE Help Contents, select the Index tab and search for Source file types.

If a file contains lower levels of hierarchy, the icon has a + to the left of the name. HDL files have this + to show the entities (VHDL) or modules (Verilog) within the file. You can expand the hierarchy by clicking the +. You can open a file for editing by double-clicking on the filename.

Snapshots Tab

The Snapshots tab displays all snapshots associated with the project currently open in Project Navigator. A snapshot is a copy of the project including all files in the working directory, and synthesis and simulation sub-directories. A snapshot is stored with the project for which it was taken, and the snapshot can be viewed in the Snapshots tab. You can view the reports, user documents, and source files for all snapshots. All information displayed in the Snapshots tab is read-only. Using snapshots provides an excellent version control system, enabling subteams to do simultaneous development on the same design.

Note: Remote sources are not copied with the snapshot. A reference is maintained in the snapshot. For more information, see the ISE Help.

Libraries Tab

The Libraries tab displays all libraries associated with the project open in Project Navigator.

Processes Window

This window contains one default tab called the Processes tab.

Processes Tab

The Processes tab is context sensitive and changes based upon the source type selected in the Sources tab and the Top-Level Source Type in your project. From the Processes tab, you can run the functions necessary to define, run and view your design. The Processes tab provides access to the following functions:

- Add an Existing Source
- Create New Source
- View Design Summary
- Design Entry Utilities
 - Provides access to symbol generation, instantiation templates, HDL Converter, View command line Log File, and simulation library compilation.
- User Constraints
 - Provides access to editing location and timing constraints.
- Synthesis
 - Provides access to Check Syntax, Synthesis, View RTL or Technology Schematic, and synthesis reports. This varies depending on the synthesis tools you use.
• Implement Design
 Provides access to implementation tools, design flow reports, and point tools.
• Generate Programming File
 Provides access to the configuration tools and bitstream generation.

The Processes tab incorporates automake technology. This enables the user to select any process in the flow and the software automatically runs the processes necessary to get to the desired step. For example, when you run the Implement Design process, Project Navigator also runs the Synthesis process because implementation is dependent on up-to-date synthesis results.

Note: To view a running log of command line arguments in the Console tab of the Transcript window, expand Design Entry Utilities and select **View Command Line Log File**. See the Using Command Line section of Chapter 5, “Design Implementation” for further details.

Transcript Window

The Transcript window contains five default tabs: Console, Errors, Warnings, Tcl Console, Find in Files.

- **Console**
 Displays errors, warnings, and information messages. Errors are signified by a red (X) next to the message, while warnings have a yellow exclamation mark (!).

- **Warnings**
 Displays only warning messages. Other console messages are filtered out.

- **Errors**
 Displays only error messages. Other console messages are filtered out.

- **Tcl Console**
 Is a user interactive console. In additions to displaying errors, warnings and informational messages, the Tcl Console allows a user to enter Project Navigator specific Tcl commands. For more information on Tcl commands, see the ISE Help.

- **Find in Files**
 Displays the results of the **Edit > Find in Files** function.

Error Navigation to Source

You can navigate from a synthesis error or warning message in the Transcript window to the location of the error in a source HDL file. To do so, select the error or warning message, right-click the mouse, and select **Goto Source** from the right-click menu. The HDL source file opens and the cursor moves to the line with the error.

Error Navigation to Solution Record

You can navigate from an error or warning message in the Transcript window to the relevant Answer Records on the www.xilinx.com/support website. To navigate to the Answer Record(s), select the error or warning message, right-click the mouse, and select **Goto Solution Record** from the right-click menu. The default web browser opens and displays all Answer Records applicable to this message.
Workspace

Design Summary

The Design Summary lists high-level information about your project, including overview information, a device utilization summary, performance data gathered from the Place & Route (PAR) report, constraints information, and summary information from all reports with links to the individual reports.

Text Editor

Source files and other text documents can be opened in a user designated editor. The editor is determined by the setting found by selecting Edit > Preferences, expand ISE General and click Editor. The default editor is the ISE Text Editor. ISE Text Editor enables you to edit source files and user documents. You can access the Language Templates, which is a catalog of ABEL, Verilog and VHDL language, and User Constraints File templates that you can use and modify in your own design.

ISE Simulator / Waveform Editor

ISE Simulator / Waveform Editor is a test bench and test fixture creation tool integrated in the Project Navigator framework. Waveform Editor can be used to graphically enter stimuli and the expected response, then generate a VHDL test bench or Verilog test fixture. For details, refer to “Creating a Test Bench Waveform Using the Waveform Editor” in Chapter 4.

Schematic Editor

The Schematic Editor is integrated in the Project Navigator framework. The Schematic Editor can be used to graphically create and view logical designs.

Using Snapshots and Archives

Using Snapshots

Snapshots enable you to maintain revision control over the design. A snapshot contains a copy of all of the files in the project directory. See also “Snapshots Tab.”

Creating a Snapshot

To create a snapshot:

1. Select Project > Take Snapshot.
2. In the Take a Snapshot of the Project dialog box, enter the snapshot name and any comments associated with the snapshot.

The snapshot containing all of the files in the project directory along with project settings is displayed in the Snapshots tab.

Restoring a Snapshot

Since snapshots are read-only, a snapshot must be restored in order to continue work. When you restore a snapshot, it replaces the project in your current session.
To restore a snapshot:
1. In the Snapshots tab, select the snapshot from the drop-down list.
2. Select Project > Make Snapshot Current.

Before the snapshot replaces the current project, you are given the option to place the current project in a snapshot so that your work is not lost.

Viewing a Snapshot

The Snapshots tab contains a list of all the snapshots available in the current project. To review a process report or verify process status within a snapshot:
1. Expand the snapshot source tree and select the desired source file.
2. Right-click the mouse over the desired process report.
3. From the menu, select Open Without Updating.

Using Project Archives

You can also archive the entire project into a single compressed file. This allows for easier transfer over email and storage of numerous projects in a limited space.

Creating an Archive

To create an archive:
1. Select Project > Archive.
2. In the Create Zip Archive dialog box, enter the archive name and location.

Note: The archive contains all of the files in the project directory along with project settings. Remote sources are not zipped up into the archive. For more information, see the ISE Help.

Restoring an Archive

You cannot restore an archived file directly into Project Navigator. The compressed file can be extracted with any ZIP utility and you can then open the extracted file in Project Navigator.

Overview of Synthesis Tools

You can synthesize your design using various synthesis tools. The following section lists the supported synthesis tool and includes some process properties information.

LeonardoSpectrum

This synthesis tool is not part of the ISE package and is not available unless purchased separately. Two commonly used properties are Optimization Goal and Optimization Effort. With these properties you can control the synthesis results for area or speed and the amount of time the synthesizer runs. This synthesis tool is available for both an HDL- and Schematic-based design flow.
Process Properties

Process properties enable you to control the synthesis results of LeonardoSpectrum. Most of the commonly used synthesis options available for the LeonardoSpectrum stand-alone version are available for LeonardoSpectrum synthesis through ISE.

For more information, see the LeonardoSpectrum online help.

![LeonardoSpectrum Synthesis Process Properties](image)

Figure 1-2: LeonardoSpectrum Synthesis Process Properties

Precision Synthesis

This synthesis tool is not part of the ISE package and is not available unless purchased separately. Two commonly used properties are Optimization Goal and Optimization Effort. With these properties you can control the synthesis results for area or speed and the amount of time the synthesizer runs. This synthesis tool is available for both an HDL- and Schematic-based design flow.

Process Properties

Process properties enable you to control the synthesis results of Precision. Most of the commonly used synthesis options available for the Precision stand-alone version are available for Precision synthesis through ISE.

For more information, see the Precision online help.
Synplify/Synplify Pro

This synthesis tool is not part of the ISE package and is not available unless purchased separately. This synthesis tool is available for HDL-based designs, but it is not available for a schematic-based design.

Process Properties

Process properties enable you to control the synthesis results of Synplify/Synplify Pro. Most of the commonly used synthesis options available in the Synplify/Synplify Pro stand-alone version are available for Synplify/Synplify Pro synthesis through ISE.

For more information, see the Synplify/Synplify Pro online help.
Figure 1-4: Synplify/Synplify Pro Synthesis Process Properties

Xilinx Synthesis Technology (XST)

This synthesis tool is part of the ISE package and is available for both an HDL- and Schematic-based design flow.

Process Properties

Process properties enable you to control the synthesis results of XST. Two commonly used properties are Optimization Goal and Optimization Effort. With these properties you can control the synthesis results for area or speed, and the amount of time the synthesizer runs.

Figure 1-5: XST Synthesis Process Properties
Chapter 2

HDL-Based Design

This chapter includes the following sections:

- “Overview of HDL-Based Design”
- “Getting Started”
- “Design Description”
- “Design Entry”
- “Synthesizing the Design”

Overview of HDL-Based Design

This chapter guides you through a typical HDL-based design procedure using a design of a runner’s stopwatch. The design example used in this tutorial demonstrates many device features, software features, and design flow practices you can apply to your own design. This design targets a Spartan™-3 device; however, all of the principles and flows taught are applicable to any Xilinx® device family, unless otherwise noted.

The design is composed of HDL elements and two cores. You can synthesize the design using Xilinx Synthesis Technology (XST), Synplify/Synplify Pro, LeonardoSpectrum, or Precision.

This chapter is the first in the “HDL Design Flow.” After the design is successfully defined, you will perform behavioral simulation (Chapter 4, “Behavioral Simulation”), run implementation with the Xilinx Implementation Tools (Chapter 5, “Design Implementation”), perform timing simulation (Chapter 6, “Timing Simulation”), and configure and download to the Spartan-3 demo board (Chapter 7, “iMPACT Tutorial”).
Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

To perform this tutorial, you must have the following software and software components installed:

- Xilinx Series ISE™ 8.2i
- Spartan-3 libraries and device files

Note: For detailed software installation instructions, refer to the ISE Release Notes and Installation Guide.

This tutorial assumes that the software is installed in the default location `c:\xilinx`. If you have installed the software in a different location, substitute your installation path for `c:\xilinx` in the procedures that follow.

Optional Software Requirements

The following third-party synthesis tools are incorporated into this tutorial, and may be used in place of the Xilinx Synthesis Tool (XST):

- Synplicity Synplify/Synplify PRO 8.2.1 (or above)
- Mentor LeonardoSpectrum 2004.b (or above)
- Mentor Precision Synthesis 2005.c (or above)

The following third-party simulation tool is optional for this tutorial, and may be used in place of the ISE Simulator:

- ModelSim

VHDL or Verilog?

This tutorial supports both VHDL and Verilog designs, and applies to both designs simultaneously, noting differences where applicable. You will need to decide which HDL language you would like to work through for the tutorial, and download the appropriate files for that language. XST can synthesize a mixed-language design. However, this tutorial does not go over the mixed language feature.

Installing the Tutorial Project Files

The Stopwatch tutorial projects can be downloaded from http://www.xilinx.com/support/techsup/tutorials/tutorials8.htm. Download either the VHDL or the Verilog design flow project files.

After you have downloaded the tutorial project files from the web, unzip the tutorial projects into the `c:\xilinx\ISEexamples` directory, replacing any existing files in that directory.

When you unzip the tutorial project files into `c:\xilinx\ISEexamples`, the directory `wtut_vhd` (for a VHDL design flow) or `wtut_ver` (for a Verilog design flow) is created within `c:\xilinx\ISEexamples`, and the tutorial files are copied into the newly-created directory.
The following table lists the locations of tutorial source files.

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wtut_vhd</td>
<td>Incomplete VHDL Source Files</td>
</tr>
<tr>
<td>wtut_ver</td>
<td>Incomplete Verilog Source Files</td>
</tr>
<tr>
<td>wtut_vhd\wtut_vhd_completed</td>
<td>Completed VHDL Source Files</td>
</tr>
<tr>
<td>wtut_ver\wtut_ver_completed</td>
<td>Completed Verilog Source Files</td>
</tr>
</tbody>
</table>

Note: Do not overwrite any files in the solution directories.

The completed directories contain the finished HDL source files.

This tutorial assumes that the files are unzipped under c:\xilinx\ISEexamples, but you can unzip the source files into any directory with read-write permissions. If you unzip the files into a different location, substitute your project path for c:\xilinx\ISEexamples in the procedures that follow.

Starting the ISE Software

To start ISE:

Double-click the ISE Project Navigator icon on your desktop or select Start > All Programs > Xilinx ISE 8.2i > Project Navigator.

![ISE Project Navigator Desktop Icon](image)

Creating a New Project

Note: Two methods are provided for creating a new project: Using the New Project Wizard and Using a Tcl Script. Use either method provided below.

Creating a New Project: Using the New Project Wizard

1. From Project Navigator, select File > New Project.
 The New Project Wizard appears.
2. In the Project Location field, browse to `c:\xilinx\ISEexamples` or to the directory in which you installed the project.

3. Type `wtut_vhd` or `wtut_ver` as the Project Name.

4. Verify that HDL is selected as the Top Module and click **Next**.

The New Project Wizard - Device Properties window appears.

Figure 2-2: New Project Wizard - Create New Project

Figure 2-3: New Project Wizard - Device Properties
5. Select the following values in the New Project Wizard - Device Properties window:
 ♦ Product Category: **All**
 ♦ Family: **Spartan3**
 ♦ Device: **XC3S200**
 ♦ Package: **FT256**
 ♦ Speed: **-4**
 ♦ Synthesis Tool: **XST (VHDL/Verilog)**
 ♦ Simulator: **ISE Simulator (VHDL/Verilog)**

6. Click **Next**, then **Next**, and then click **Add Source** in the New Project Wizard - Add Existing Sources window.

7. Browse to `c:\xilinx\ISEexamples\wtut_vhd` or `c:\xilinx\ISEexamples\wtut_ver`.

8. Select the following files (`.vhd` files for VHDL design entry or `.v` files for Verilog design entry) and click **Open**.
 ♦ `clk_div_262k`
 ♦ `debounce`
 ♦ `led_control`
 ♦ `statmach`
 ♦ `stopwatch`

9. Click **Next**, then **Finish** to complete the New Project Wizard.

10. In the Adding Source Files dialog box, verify that all added HDL files are associated with Synthesis/Imp + Simulation, then click **OK**.

Creating a New Project: Using a Tcl Script

1. With Project Navigator open, select the Tcl Console tab.
2. Change the current working directory to the directory where the tutorial source files were unzipped by typing `cd c:/xilinx/ISEexamples/wtut_vhd` (VHDL design entry) or `cd c:/xilinx/ISEexamples/wtut_ver` (Verilog design entry).
3. Run the project creation Tcl script by typing `source create_wtut_vhd.tcl` (VHDL design entry) or `source create_wtut_ver.tcl` (Verilog design entry).

 Note: If presented with a dialog box stating that `*.ise` appears to be locked, click **Yes** to continue project creation.

Stopping the Tutorial

You may stop the tutorial at any time and save your work by selecting **File > Save All**.
Design Description

The design used in this tutorial is a hierarchical, HDL-based design, which means that the top-level design file is an HDL file that references several other lower-level macros. The lower-level macros are either HDL modules or IP modules.

The design begins as an unfinished design. Throughout the tutorial, you will complete the design by generating some of the modules from scratch and by completing others from existing files. When the design is complete, you will simulate it to verify the design’s functionality.

In the runner’s stopwatch design, there are three external inputs and three external output buses. The system clock is an externally generated signal. The following list summarizes the input lines and output buses.

Inputs

The following are input signals for the tutorial stopwatch design.

- **STRTSTOP**
 Starts and stops the stopwatch. This is an active low signal which acts like the start/stop button on a runner’s stopwatch.

- **RESET**
 Resets the stopwatch to 00.0 after it has been stopped.

- **CLK**
 Externally generated system clock.

Outputs

The following are output signals for the design.

- **SEG_A, SEG_B, SEG_C, SEG_D, SEG_E, SEG_G, SEG_DP**
 These outputs drive the individual segments and the decimal point for all four digits of the stopwatch design. The digits of the stopwatch are displayed on 7-segment LED displays.

- **AN[3:0]**
 This is a one-hot vector signal which drives the anodes of the four 7-segment LED displays to determine which display will be lighted.

Functional Blocks

The completed design consists of the following functional blocks.

- **clk_div_262k**
 Macro which divides a clock frequency by 262,144.

- **dcm1**
 Clocking Wizard macro with internal feedback, frequency controlled output, and duty-cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the Spartan-3 demo board to 26.2144 MHz.
Design Entry

For this hierarchical design, you will examine HDL files, correct syntax errors, create an HDL macro, and add a CORE Generator module. You will create and use each type of design macro. All procedures used in the tutorial can be used later for your own designs.

With the wtut_vhd.ise or wtut_ver.ise project open in Project Navigator, the Sources tab displays all of the source files currently added to the project, with the associated entity or module names (see Figure 2-4). In the current project, time_cnt and hex2led are instantiated, but the associated entity or module is not defined in the project. Instantiated components with no entity or module declaration are displayed with a red question mark.

Figure 2-4: Sources Tab Showing Completed Design
Adding Source Files

HDL files must be added to the project before they can be synthesized. Four HDL files have already been added to this project. An additional file must be added.

1. Select Project > Add Source.
2. Select time_cnt.vhd or time_cnt.v from the project directory and click Open.
3. In the Adding Source Files dialog box, verify that time_cnt is associated with Synthesis/Imp + Simulation and click OK.

Note: Alternatively, the time_cnt.vhd file could be added to the project by entering the following command in the Tcl Console tab and then selecting View > Refresh.

```
xfile add time_cnt.vhd
```

The red question-mark (?) for time_cnt should change to show the VHD file icon.

![TIMECNT_1 - time_cnt - time_cnt_arch (time_cnt.vhd)](image)

Figure 2-5: time_cnt.vhd File in Sources Tab

Checking the Syntax

To check the syntax of source files:

1. Select stopwatch.vhd or stopwatch.v in the Sources tab.

 When you select the HDL file, the Processes tab displays all processes available for this file.

2. In the Processes tab, click the + next to Synthesize to expand the process hierarchy.

3. Double-click Check Syntax in the Synthesize hierarchy.

Note: Check Syntax is not available when Synplify is selected as the synthesis tool.

Correcting HDL Errors

The time_cnt module contains a syntax error that must be corrected. The red “x” beside the Check Syntax process indicates an error was found during the analysis. In the Console tab of the Transcript window, Project Navigator reports errors with a red (X) and warnings with a yellow (!).

To display the error in the source file:

1. Click the file name in the error message in the Console or Errors tab. The source code will come up in the main display tab.

2. Correct any errors in the HDL source file. The comments next to the error explain this simple fix.

3. Select File > Save to save the file.

4. Re-analyze the file by selecting the HDL file and double-clicking Check Syntax.
Creating an HDL-Based Module

Next you will create a module from HDL code. With ISE, you can easily create modules from HDL code using the ISE Text Editor. The HDL code is then connected to your top-level HDL design through instantiation and is compiled with the rest of the design.

You will author a new HDL module. This macro serves to convert the 4-bit outputs of the time_cnt and ten_cnt modules into a 7-segment LED display format.

Using the New Source Wizard and ISE Text Editor

In this section, you create a file using the New Source wizard, specifying the name and ports of the component. The resulting HDL file is then modified in the ISE Text Editor.

To create the source file:

1. Select **Project > New Source**.

 A dialog box opens in which you specify the type of source you want to create.

2. Select **VHDL Module** or **Verilog Module**.

3. In the File Name field, type **hex2led**.

4. Click **Next**.

5. Enter a 4-bit input port named **HEX** and a 7-bit output port named **LED** for the **hex2led** component in this way:

 a. Click in the Port Name field and type **HEX**.

 b. Click in the Direction field and set the direction to **in**.

 c. Check the Bus designation box.

 d. In the MSB field enter **3**, and in the LSB field enter **0**. Refer to Figure 2-6.

 e. Repeat the above steps for the **LED[6:0]** output bus. Be sure that the direction is set to **out**, MSB is set to **6** and LSB is set to **0**.
6. Click **Next** to complete the Wizard session.
 A description of the module displays.

7. Click **Finish** to open the empty HDL file in the ISE Text Editor.
The VHDL file is displayed in Figure 2-7. The Verilog HDL file is displayed in Figure 2-8.
Design Entry

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
----library UNISIM;
----use UNISIM.USComponents.all;

entity hexled is
  Port ( HEX : in std_logic_vector(3 downto 0);
         LED : out std_logic_vector(6 downto 0));
end hexled;

architecture Behavioral of hexled is
begin

```

Figure 2-7: VHDL File in ISE Text Editor

```verilog
module hexled(HEX, LED);
  input [3:0] HEX;
  output [6:0] LED;

```

Figure 2-8: Verilog File in ISE Text Editor
In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic file structure is already in place. Keywords are displayed in blue, comments in green, and values are black. The file is color-coded to enhance readability and help you recognize typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates which represent commonly used logic components, such as counters, D flip-flops, multiplexers, and primitives. You will use the HEX2LED Converter template for this exercise. This template provides source code to convert a 4-bit value to 7-segment LED display format.

Note: You can add your own templates to the Language Templates for components or constructs that you use often.

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select **Edit > Language Templates**.
 Each HDL language in the Language Templates is divided into five sections: Common Constructs, Device Primitive Instantiation, Simulation Constructs, Synthesis Constructs and User Templates. To expand the view of any of these sections, click the + next to the section. Click any of the listed templates to view the template contents in the right pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Constructs hierarchy, expand the Coding Examples hierarchy, expand the Misc hierarchy, and select the template called **7-Segment Display Hex Conversion**. Use the appropriate template for the language you are using.
 When the template is selected in the hierarchy the contents display in the right pane.
Adding a Language Template to Your File

You will now use the drag and drop method for adding templates to your HDL file. Refer to “Working with Language Templates” in the ISE Help for additional usability options.

To add the template to your HDL file using the drag and drop method:

1. Select **Window > Tile Vertically** to show both the HDL file and the Language Templates window.
2. Click and drag the **7-Segment Display Hex Conversion** name from the Language Template topology into the **hex2led.vhd** file under the architecture **begin** statement, or into the **hex2led.v** file under the **module** declaration.
3. Close the Language Templates window.
4. (Verilog only) After the input and output statements and before the HEX2LED converter that you just added, add the following line of code to the HDL file to allow an assignment:

   ```
   reg [6:0] LED;
   ```
5. (Verilog only) Replace the two <4-bit_hex_input> and the sixteen <7-seg_output> entries with **HEX** and **LED** respectively.
 You now have complete and functional HDL code.

6. Save the file by selecting **File > Save**.
7. Select **hex2led** in the Sources tab.
8. In the Processes tab, double-click **Check Syntax**.
9. Close the ISE Text Editor.

Creating a CORE Generator Module

CORE Generator is a graphical interactive design tool that enables you to create high-level modules such as counters, shift registers, RAM and multiplexers. You can customize and pre-optimize the modules to take advantage of the inherent architectural features of the Xilinx FPGA architectures, such as Fast Carry Logic, SRL16s, and distributed and block RAM.

In this section, you will create a CORE Generator module called **ten_cnt**. **Ten_cnt** is a 4-bit binary encoded counter. Two instances of **ten_cnt** will be used to produce the tenths and hundredths digits of the stopwatch’s time value.

Creating a CORE Generator Module

To create a CORE Generator module:

1. In Project Navigator, select **Project > New Source**.
2. Select **IP (Coregen & Architecture Wizard)**.
3. Type **ten_cnt** in the File name field.
4. Click **Next**.
5. Double-click **Basic Elements**, then double-click **Counters**.
6. Select **Binary Counter**, then click **Next** and click **Finish** to open the Binary Counter customization GUI. This customization GUI enables you to customize the counter to the design specifications.
7. Fill in the Binary Counter customization GUI with the following settings:
 - **Component Name**: **ten_cnt**
 Defines the name of the module.
 - **Output Width**: 4
 Defines the width of the output bus.
 - **Count Restrictions**:
 - **Step Value**: 1
 - **Restrict Count**: Selected
 - **Final Count Value**: 9
 This dictates the maximum count value.
 - **Count Mode**: **UP**
Click Next.

Asynchronous Settings:
- Select Init
- Asynchronous Init Value: 0

Synchronous Settings: None selected

Clock Enable:
- Select CE

Click Next.

Load Options: None selected

Threshold Options:
- Asynchronous Threshold Output: Selected
- Synchronous Threshold Output: Not selected
- Cycle Early Threshold Output: Not selected
- Threshold Value: 9

Signal goes high when the specified value has been reached.
8. Check that only the following pins are used (used pins will be highlighted on the symbol on the left side of the customization GUI):
 - clk
 - ce
 - ainit
 - thresh0
 - [3:0]q

9. Click Finish.
 The module is created and automatically added to the project library.

Note: A number of files are added to the project directory. Some of these files are:
 - ten_cnt.vho or ten_cnt.veo
 These are the instantiation templates used to incorporate the CORE Generator module into your source HDL.
 - ten_cnt.vhd or ten_cnt.v
 These are HDL wrapper files for the core and are used only for simulation.
 - ten_cnt.edn
 This file is the netlist that is used during the Translate phase of implementation.
 - ten_cnt.xco
 This file stores the configuration information for the Tenths module and is used as a project source.

Instantiating the CORE Generator Module in the HDL Code

Next, instantiate the CORE Generator module in the HDL code using either a VHDL flow or a Verilog flow.

VHDL Flow

To instantiate the CORE Generator module using a VHDL flow:
1. In Project Navigator, double-click stopwatch.vhd to open the file in ISE Text Editor.
2. Place your cursor after the line that states:
   ```vhdl
   -- Insert Coregen Counter Component Declaration
   ```
3. Select Edit > Insert File, then select ten_cnt.vho and click Open.
 The VHDL template file for the CORE Generator instantiation is inserted.
4. Highlight the inserted code from

-- Begin Cut here for INSTANTIATION Template ----

to

--INST_TAG_END ------- End INSTANTIATION Template ----

5. Select Edit > Cut.

6. Place the cursor after the line that states:

-- Insert Coregen Counter Instantiation

7. Select Edit > Paste two times because two CORE Generator counters are needed.

8. Change the two instance names from your_instance_name to ten_cnt1 and ten_cnt2.

9. Edit this instantiated code to connect the signals in the Stopwatch design to the ports of the CORE Generator module as shown in Figure 2-12.
10. Save the design using File > Save, and close the ISE Text Editor.

Verilog Flow

To instantiate the CORE Generator module using a Verilog flow:

1. In Project Navigator, double-click stopwatch.v to open the file in the ISE Text Editor.
2. Place your cursor after the line that states:
   ```verilog
   //Place the Coregen module instantiation for ten_cnt here
   ```
3. Select Edit > Insert File and select ten_cnt.veo.
4. Highlight the inserted code of ten_cnt.veo from
   ```verilog
   //----------- Begin cut here for INSTANTIATION TEMPLATE ------
   ```
 to
   ```verilog
   // INST_TAG_END ------ End INSTANTIATION Template ------
   ```
5. Select Edit > Copy.
6. Select Edit > Paste to paste another instantiation of ten_cnt after the first because two CORE Generator counters are needed.
7. Change the two instance names from YourInstanceName to ten_cnt1 and ten_cnt2.
8. Edit this code to connect the signals in the Stopwatch design to the ports of the CORE Generator module as shown in Figure 2-13.
Creating a DCM Module

The Clocking Wizard, a part of the Xilinx Architecture Wizard, enables you to graphically select Digital Clock Manager (DCM) features that you wish to use. In this section you create a basic DCM module with CLK0 feedback and duty-cycle correction.

Using the DCM Wizard

To create the DCM1 module:

1. In Project Navigator, select **Project > New Source**.
2. In the New Source dialog box, select **IP (CoreGen & Architecture Wizard)** source and type **dcm1** for the file name.
3. Click **Next**.
4. In the Select IP dialog box, select **FPGA Features and Design > Clocking > Virtex-II Pro, Virtex-II, Spartan-3 > Single DCM**.

Figure 2-13: Verilog Component Instantiation of the CORE Generator Module

9. Save the design using **File > Save** and close **stopwatch.v** in the ISE Text Editor.

```
79  //--------- Begin Cut here for INSTANTIATION Template ------/ INST_TAG
80  ten_cnt ten_cnt1 {
81    .clk(clk_100),
82    .ce(clk_en_int),
83    .ainit(rst_int),
84    .thresh0(ten_cnt_thresh1),
85    .q(hex2led_int1));
86
87  // INST_TAG_END ------ End INSTANTIATION Template --------
88  //--------- Begin Cut here for INSTANTIATION Template ------/ INST_TAG
89  ten_cnt ten_cnt2 {
90    .clk(clk_100),
91    .ce(clk_en_int),
92    .ainit(rst_int),
93    .thresh0(ten_cnt_thresh2),
94    .q(hex2led_int2));
95
96  // INST_TAG_END ------ End INSTANTIATION Template --------
```
5. Click **Next**, then **Finish**. The Clocking Wizard is launched.
6. Verify that **RST**, **CLK0** and **LOCKED** ports are selected.
7. Select **CLKFX** port.
8. Type **50** and select **MHz** for the Input Clock Frequency.
9. Verify the following settings:
 - Phase Shift: **NONE**
 - CLKIN Source: **External, Single**
 - Feedback Source: **Internal**
 - Feedback Value: **1X**
 - Use Duty Cycle Correction: Selected
10. Click the **Advanced** button.
11. Select **Wait for DCM lock before DONE Signal goes high**.
12. Click **OK**.
 An informational message about the LCK_cycle and the STARTUP_WAIT BitGen option may appear. Click **OK** to close the message box.
13. Click **Next**, then click **Next**.
14. In the Clock Frequency Synthesizer dialog box, type **26.2144** and select **MHz** in the Use output frequency box.
 \[
 \frac{(26.2144 \text{MHz})}{2^{18}} = 100 \text{Hz}
 \]
15. Click **Next** and then **Finish**.
The **dcm1.xaw** file is added to the list of project source files in the Sources tab.

Figure 2-14: Selecting Single DCM IP Type
Instantiating the DCM1 Macro - VHDL Design

Next, you will instantiate the dcm1 macro for your VHDL or Verilog design. To instantiate the dcm1 macro for the VHDL design:

1. In Project Navigator, in the Sources tab, select dcm1.xaw.
2. In the Processes tab, right-click View HDL Instantiation Template and select Properties.
3. Choose VHDL for the HDL Instantiation Template Target Language value and click OK.
4. In the Processes tab, double-click View HDL Instantiation Template.
5. Highlight the component declaration template in the newly opened HDL Instantiation Template (dcm1.vhi), shown below.

```
4  -- Notes:
5  -- 1) This instantiation template has been aut
6  -- std_logic and std_logic_vector for the ports
7  -- 2) To use this template to instantiate this
8
9  COMPONENT dcm1
10
11   CLKIN_IN : IN std_logic;
12   RST_IN : IN std_logic;
13   CLKFX_OUT : OUT std_logic;
14   CLKIN_IBUFG_OUT : OUT std_logic;
15   CLKO_OUT : OUT std_logic;
16   LOCKED_OUT : OUT std_logic
17 }
18 END COMPONENT;
```

Figure 2-15: VHDL DCM Component Declaration

6. Select Edit > Copy.
7. Place the cursor in the stopwatch.vhd file in a section labeled
 -- Insert DCM1 component declaration here.
8. Select Edit > Paste to paste the component declaration.
9. Highlight the instantiation template in the newly opened HDL Instantiation Template, shown below.

```
18
19  Inst_dcm1: dcm1 PORT MAP(
20     CLKIN_IN => ,
21     RST_IN => ,
22     CLKFX_OUT => ,
23     CLKIN_IBUFG_OUT => ,
24     CLKO_OUT => ,
25     LOCKED_OUT =>
26   );
```

Figure 2-16: VHDL DCM Component Instantiation
10. Select **Edit > Copy**.
11. Place the cursor in the `stopwatch.vhd` file below the line labeled

 "-- Insert DCM1 instantiation here".
12. Select **Edit > Paste** to paste the instantiation template.
13. Make the necessary changes as shown in the figure below.

```
205  -- Insert DCM1 instantiation here
206         dcm1 PORT MAP(
207          CLK_IN => CLK,
208          RST_IN => RESET,
209          CLKFX_OUT => clk_262144k,
210          CLKIN_IBUF_OUT => open,
211          CLKO_OUT => clk_int,
212          LOCKED_OUT => locked
213         );
```

Figure 2-17: VHDL Instantiation for dcm1

14. Select **File > Save** to save the `stopwatch.vhd` file.

Instantiating the DCM1 Macro - Verilog

To instantiate the DCM1 macro for your Verilog design:

1. In Project Navigator, in the Sources tab, select `dcm1.xaw`.
2. In the Processes tab, right-click **View HDL Instantiation Template** and select **Properties**.
3. Choose **Verilog** for the HDL Instantiation Template Target Language value.
4. In the Processes tab, double-click **View HDL Instantiation Template**.
5. From the newly opened HDL Instantiation Template (`dcm1.tfi`), copy the instantiation template, shown below.

```
4       // Instantiate the module
5         dcm1.instance_name (  
6             .CLKIN_IN(CLK_IN),
7             .RST_IN(RST_IN),
8             .CLKFX_OUT(CLKFX_OUT),
9             .CLKIN_IBUF_OUT(CLKIN_IBUF_OUT),
10             .CLKO_OUT(CLKO_OUT),
11             .LOCKED_OUT(LOCKED_OUT)
12         );
```

Figure 2-18: DCM1 Macro and Instantiation Templates

6. Paste the instantiation template into the section in `stopwatch.v` labeled //Insert DCM1 instantiation here.
7. Make the necessary changes as shown in the figure below.

```verilog
//Insert DCM1 instantiation here

   dcm1 instance_name ( 
      .CLKIN_IN(CK),
      .RST_IN(RESET),
      .CLKFX_OUT(clk 262144k),
      .CLKIN_IBUFG_OUT(),
      .CLKO_OUT(clk int),
      .LOCKED_OUT(locked)
   );
```

Figure 2-19: Verilog Instantiation for dcm1

8. Select **File > Save** to save the *stopwatch.v* file.

Synthesizing the Design

So far you have been using XST (the Xilinx synthesis tool) for syntax checking. Next, you will synthesize the design using either XST, Synplify/Synplify Pro, LeonardoSpectrum or Precision. The synthesis tool uses the design’s HDL code and generates a supported netlist type (EDIF or NGC) for the Xilinx implementation tools. The synthesis tool performs three general steps (although all synthesis tools further break down these general steps) to create the netlist:

- **Analyze / Check Syntax**
 Checks the syntax of the source code.

- **Compile**
 Translates and optimizes the HDL code into a set of components that the synthesis tool can recognize.

- **Map**
 Translates the components from the compile stage into the target technology’s primitive components.

The synthesis tool can be changed at any time during the design flow. To change the synthesis tool:

1. Select the targeted part in the Sources tab.
2. Select **Source > Properties**.
3. In the Project Properties dialog box, click the Synthesis Tool value and use the pull-down arrow to select the desired synthesis tool from the list.
Note: If you do not see your synthesis tool among the options in the list, you may not have the software installed or may not have it configured in ISE. The Synthesis tools are configured in the Preferences dialog box (Edit > Preferences, expand ISE General, then click Integrated Tools).

Changing the design flow results in the deletion of implementation data. You have not yet created any implementation data in this tutorial. For projects that contain implementation data, Xilinx recommends that you take a snapshot of the project before changing the synthesis tool to preserve this data. For more information about taking a snapshot, see “Creating a Snapshot” in Chapter 1.

A summary of available synthesis tools is available in “Overview of Synthesis Tools” in Chapter 1

Read the section for your synthesis tool:

- “Synthesizing the Design using XST”
- “Synthesizing the Design using Synplify/Synplify Pro”
- “Synthesizing the Design using LeonardoSpectrum”
- “Synthesizing the Design Using Precision Synthesis”

Synthesizing the Design using XST

Now that you have created and analyzed the design, the next step is to synthesize the design. During synthesis, the HDL files are translated into gates and optimized to the target architecture.

Processes available for synthesis using XST are as follows:

- **View Synthesis Report**

 Gives a synthesis mapping and timing summary as well as optimizations that took place.
- **View RTL Schematic**
 Generates a schematic view of your RTL netlist.

- **View Technology Schematic**
 Generates a schematic view of your Technology netlist.

- **Check Syntax**
 Verifies that the HDL code is entered properly.

- **Generate Post-Synthesis Simulation Model**
 Creates HDL simulation models based on the synthesis netlist.

Entering Constraints

XST supports a User Constraint File (UCF) style syntax to define synthesis and timing constraints. This format is called the Xilinx Constraint File (XCF), and the file has an .xcf file extension. XST uses the .xcf extension to determine if the file is a constraints file.

To create a new Xilinx Constraint File:

1. Select **Project > Add Source**.
2. In the Add Existing Sources dialog box, change the Files of type: to ‘All Files (*) and then select and add **stopwatch.xcf**.
3. Notice that stopwatch.xcf is added as a User document.
 Note: In place of the three steps above, you may add the .xcf file through the Tcl Console, using the following command and then selecting **View > Refresh**.

 `xfile add stopwatch.xcf`

4. Double-click **stopwatch.xcf** to open the file in the ISE Text Editor.
5. The following constraints should exist in the stopwatch.xcf file:

   ```
   TIMESPEC "TS_CLK" = PERIOD "CLK" 20 ns;
   BEGIN MODEL stopwatch
   NET "CLK" TNM_NET = "CLK";
   NET "CLK"  LOC = "T9";
   NET "AN<0>"  LOC = "d14";
   NET "AN<1>"  LOC = "g14";
   NET "AN<2>"  LOC = "f14";
   NET "AN<3>"  LOC = "e13";
   NET "RESET"  LOC = "L13";
   NET "SEG_A"  LOC = "e14";
   NET "SEG_B"  LOC = "g13";
   NET "SEG_C"  LOC = "n15";
   NET "SEG_D"  LOC = "p15";
   NET "SEG_E"  LOC = "r16";
   NET "SEG_F"  LOC = "f13";
   NET "SEG_G"  LOC = "n16";
   NET "SEG_DP"  LOC = "P16";
   NET "STRTSTOP" LOC = "M13";
   END;
   ```
6. Close stopwatch.xcf.

Note: For more constraint options in the implementation tools, see “Using the Constraints Editor” and “Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

Entering Synthesis Options

Synthesis options enable you to modify the behavior of the synthesis tool to make optimizations according to the needs of the design. One commonly used option is to control synthesis to make optimizations based on area or speed. Other options include controlling the maximum fanout of a signal from a flip-flop or setting the desired frequency of the design.

To enter synthesis options:

1. Select stopwatch.vhd (or stopwatch.v) in the Sources tab.
2. In the Processes tab, right-click the Synthesize process and select Properties.
3. Under the Synthesis Options tab, click in the Synthesis Constraints File property field and enter stopwatch.xcf.
4. Check the Write Timing Constraints box.
5. Click OK.

Synthesizing the Design

Now you are ready to synthesize your design. To take the HDL code and generate a compatible netlist:

1. Select stopwatch.vhd (or stopwatch.v).
2. Double-click the Synthesize process in the Processes tab.

The RTL / Technology Viewer

XST can generate a schematic representation of the HDL code that you have entered. A schematic view of the code helps you analyze your design by displaying a graphical connection between the various components that XST has inferred. There are two forms of the schematic representation:

- **RTL View** - Pre-optimization of the HDL code.
- **Technology View** - Post-synthesis view of the HDL design mapped to the target technology.

To view a schematic representation of your HDL code:

1. In the Processes tab, click the + next to Synthesize to expand the process hierarchy.
2. Double-click View RTL Schematic or View Technology Schematic.
Synthesizing the Design

The RTL Viewer displays the top level schematic symbol for the design. Double-click on the symbol to push into the schematic and view the various design elements and connectivity. Right-click the schematic to view various operations that can be performed in the schematic viewer.

Figure 2-21: **RTL Viewer**

You have completed XST synthesis. An NGC file now exists for the Stopwatch design. To continue with the HDL flow:

- Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of this design.

 OR

- Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Note: For more information about XST constraints, options, reports, or running XST from the command line, see the XST User Guide. This guide is available in the collection of software manuals and is accessible from ISE by selecting **Help > Software Manuals**, or from the web at http://www.xilinx.com/support/sw_manuals/xilinx8/.

Synthesizing the Design using Synplify/Synplify Pro

Now that you have entered and analyzed the design, the next step is to synthesize the design. In this step, the HDL files are translated into gates and optimized to the target architecture. To access Synplify’s RTL viewer and constraints editor you must run Synplify outside of ISE.
To synthesize the design, set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).
2. In the Processes tab, right-click the Synthesize process and select Properties.
3. Check the Write Vendor Constraint File box.
4. Click OK to accept these values.
5. Double-click the Synthesize process to run synthesis.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking Synthesize in the Processes tab, and selecting Process > Run.

Processes available in Synplify and Synplify Pro synthesis include:

- **View Synthesis Report**

 Lists the synthesis optimizations that were performed on the design and gives a brief timing and mapping report.

- **View RTL Schematic**

 Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify Pro with a schematic view of your HDL code.

- **View Technology Schematic**

 Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify Pro with a schematic view of your HDL code mapped to the primitives associated with the target technology.

Examine Synthesis Results

To view overall synthesis results, double-click View Synthesis Report under the Synthesize process. The report consists of the following four sections:

- “Compiler Report”
- “Mapper Report”
- “Timing Report”
- “Resource Utilization”

Compiler Report

The compiler report lists each HDL file that was compiled, names which file is the top level, and displays the syntax checking result for each file that was compiled. The report also lists FSM extractions, inferred memory, warnings on latches, unused ports, and removal of redundant logic.

Note: Black boxes (modules not read into a design environment) are always noted as unbound in the Synplify reports. As long as the underlying netlist (.ngo, .ngc or .edn) for a black box exists in the project directory, the implementation tools merge the netlist into the design during the Translate phase.

Mapper Report

The mapper report lists the constraint files used, the target technology, and attributes set in the design. The report lists the mapping results of flattened instances, extracted counters, optimized flip-flops, clock and buffered nets that were created, and how FSMs were coded.
Timing Report

The timing report section provides detailed information on the constraints that you entered and on delays on parts of the design that had no constraints. The delay values are based on wireload models and are considered preliminary. Consult the post-place and route timing reports discussed in Chapter 5, “Design Implementation,” for the most accurate delay information.

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Frequency</th>
<th>Period</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>clk_div_0</td>
<td>164.3 MHz</td>
<td>5.146</td>
<td>-1.237</td>
</tr>
<tr>
<td>clk_div_1</td>
<td>140.3 MHz</td>
<td>5.483</td>
<td>-1.878</td>
</tr>
<tr>
<td>clk_div_2</td>
<td>132.5 MHz</td>
<td>5.654</td>
<td>-2.055</td>
</tr>
</tbody>
</table>

Resource Utilization

This section of the report lists all of the resources that Synplify uses for the given target technology.

You have now completed Synplify synthesis. At this point, a netlist EDN file exists for the Stopwatch design.

To continue with the HDL flow:
- Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of this design.
- OR
- Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Synthesizing the Design using LeonardoSpectrum

Now that you have entered and analyzed the design, the next step is to synthesize the design. In this step, the HDL files are translated into gates and optimized to the target architecture.

Processes available in LeonardoSpectrum synthesis include:
- **Check Syntax**
 Checks the syntax of the HDL code.
- **View Synthesis Report**
 Lists the synthesis optimizations that were performed on the design and gives a brief mapping and timing report.
- **View Synthesis Summary**
 Gives a detailed mapping and timing report with no information on the synthesis optimizations.
Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to optimize according to the needs of the design. One option is to control synthesis by optimizing based on area or speed. Other options include controlling the maximum fanout of a signal from a flip-flop or setting the desired frequency of the design.

For this tutorial, set the global synthesis options in this way:

1. Select stopwatch.vhd (or stopwatch.v).
2. In the Processes tab, right-click the Synthesize process and select Properties.
3. Select the Synthesis Options category, and set the Clock Frequency to 50 (MHz are the implied frequency units).
4. Select the Netlist Options category, and ensure that the Write the NCF box is checked.
5. Click OK to accept these values.
6. Select stopwatch.vhd (or stopwatch.v) and double-click the Synthesize process in the Processes tab.
7. Double-click View Synthesis Report and View Synthesis Summary to see the details of the synthesis. The Synthesis Report summarizes the compilation, mapping and timing of the design. The Synthesis Summary provides more detail on the mapping and timing of the design.

<table>
<thead>
<tr>
<th>Clock Frequency Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>clk_2000kHz</td>
</tr>
<tr>
<td>clk_int</td>
</tr>
<tr>
<td>clk_freq</td>
</tr>
<tr>
<td>CLE2FAZS_4/B2_01151</td>
</tr>
<tr>
<td>CLE2FAZS_4/B2_02151</td>
</tr>
<tr>
<td>CLE2FAZS_4/B2_03151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Black Table at End Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>End points</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>XN(0)/</td>
</tr>
<tr>
<td>XN(1)/</td>
</tr>
<tr>
<td>XN(2)/</td>
</tr>
<tr>
<td>XN(3)/</td>
</tr>
<tr>
<td>XN(4)/</td>
</tr>
</tbody>
</table>

Figure 2-23: LeonardoSpectrum’s Estimated Timing Data

You have now completed the design synthesis. At this point, an EDN netlist file exists for the Stopwatch design.

To continue with the HDL flow:

- Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of this design.
 - OR
- Proceed to Chapter 5, “Design Implementation,” to place and route the design.
Synthesizing the Design Using Precision Synthesis

Now that you have entered and analyzed the design, the next step is to synthesize the design. In this step, the HDL files are translated into gates and optimized to the target architecture.

Processes available for Precision Synthesis include:

- **Check Syntax**
 Checks the syntax of the HDL code.

- **View Log File**
 Lists the synthesis optimizations that were performed on the design and gives a brief timing and mapping report.

- **View RTL Schematic**
 Accessible from the Launch Tools hierarchy, this process displays Precision with a schematic-like view of your HDL code.

- **View Technology Schematic**
 Accessible from the Launch Tools hierarchy, this process displays Precision with a schematic-like view of your HDL code mapped to the primitives associated with the target technology.

- **View Critical Path Schematic**
 Accessible from the Launch Tools hierarchy, this process displays Precision with a schematic-like view of the critical path of your HDL code mapped to the primitives associated with the target technology.

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to optimize according to the needs of the design. For the tutorial, the default property settings will be used.

1. Select `stopwatch.vhd` (or `stopwatch.v`) in the Sources tab.
2. Double-click the **Synthesize** process in the Processes tab.

The RTL/Technology Viewer

Precision Synthesis can generate a schematic representation of the HDL code that you have entered. A schematic view of the code helps you analyze your design by seeing a graphical connection between the various components that Precision has inferred. To launch the design in the RTL viewer, double-click the **View RTL Schematic** process. The following figure displays the design in an RTL view.
You have now completed the design synthesis. At this point, an EDN netlist file exists for the Stopwatch design.

To continue with the HDL flow:

- Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of this design.
 OR
- Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Figure 2-24: Stopwatch Design in Precision Synthesis RTL Viewer
Chapter 3

Schematic-Based Design

This chapter includes the following sections:

- “Overview of Schematic-Based Design”
- “Getting Started”
- “Design Description”
- “Design Entry”

Overview of Schematic-Based Design

This chapter guides you through a typical FPGA schematic-based design procedure using the design of a runner’s stopwatch. The design example used in this tutorial demonstrates many device features, software features, and design flow practices that you can apply to your own designs. The stopwatch design targets a Spartan™-3 device; however, all of the principles and flows taught are applicable to any Xilinx® device family, unless otherwise noted.

This chapter is the first in the “Schematic Design Flow.” In the first part of the tutorial, you will use the ISE™ design entry tools to complete the design. The design is composed of schematic elements, a state machine, a CORE Generator™ component, and HDL macros. After the design is successfully entered in the Schematic Editor, you will perform behavioral simulation (Chapter 4, “Behavioral Simulation”), run implementation with the Xilinx Implementation Tools (Chapter 5, “Design Implementation”), perform timing simulation (Chapter 6, “Timing Simulation”), and configure and download to the Spartan-3 demo board (see Chapter 7, “iMPACT Tutorial.”).

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

You must have Xilinx ISE 8.2i installed to follow this tutorial. For this design you must install the Spartan-3 libraries and device files.

A schematic design flow is supported on Windows, Solaris, and Linux platforms.
This tutorial assumes that the software is installed in the default location, c:\xilinx. If you have installed the software in a different location, substitute c:\xilinx for your installation path.

Note: For detailed instructions about installing the software, refer to the ISE 8.2i Installation Guide and Release Notes.

Installing the Tutorial Project Files

The tutorial project files can be downloaded to your local machine from http://www.xilinx.com/support/techsup/tutorials/tutorials8.htm.

Download the Watch Schematic Design Files (wtut_sch.zip). The download contains two directories:

- wtut_sc\ (Contains source files for schematic tutorial. The schematic tutorial project will be created in this directory).
- wtut_sc\wtut_sc_completed\ (Contains the completed design files for the schematic-based tutorial design, including schematic, HDL, and State Machine files. Do not overwrite files under this directory.)

Unzip the tutorial design files in any directory with read-write permissions. The schematic tutorial files are copied into the directories when you unzip the files. This tutorial assumes that the files are unarchived under c:\xilinx\ISEexamples. If you restore the files to a different location, substitute c:\xilinx\ISEexamples with the project path.

Starting the ISE Software

To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop, or select Start > All Programs > Xilinx ISE 8.2i > Project Navigator.

![ISE Project Navigator Desktop Icon](image)

Figure 3-1: Project Navigator Desktop Icon

Creating a New Project

Two methods are provided for creating a new project: Using the New Project Wizard, and Using a Tcl Script.
Creating a New Project: Using New Project Wizard

1. From Project Navigator, select **File > New Project**. The New Project Wizard appears.

2. Type `wtut_sc` as the Project Name. Notice that `wtut_sc` is appended to the Project Location value.

3. Browse to `c:\xilinx\ISEexamples` or enter the directory in the Project Location field.

4. Select **Schematic** as the Top-Level Source Type, and then click **Next**.

Figure 3-2: New Project Wizard - Create New Project

Figure 3-3: New Project Wizard - Device Properties
5. Select the following values in the New Project Wizard - Device Properties window:
 ♦ Product Category: All
 ♦ Family: Spartan3
 ♦ Device: XC3S200
 ♦ Package: FT256
 ♦ Speed: -4
 ♦ Synthesis Tool: XST (VHDL/Verilog)
 ♦ Simulator: ISE Simulator (VHDL/Verilog)

6. Click Next, and then click Add Source in the New Project Wizard - Add Existing Sources window.

7. Browse to c:\xilinx\ISEexamples\wtut_sc.

8. Select the following files and click Open.
 ♦ clk_div_262k.sch
 ♦ debounce.sch
 ♦ led_control.sch
 ♦ stopwatch.sch

9. Click Next, then Finish to complete the New Project Wizard.

10. Verify that all added schematic files are associated with Synthesis/Imp + Simulation, and that the .dia file is associated with Synthesis/Implementation Only.

11. Click OK.

Creating a New Project: Using a Tcl Script

With Project Navigator open, select the Tcl Consol tab.

1. Change the current working directory to the directory where the tutorial source files were unzipped. (e.g. Type cd c:/xilinx/ISEexamples/wtut_sc).

2. Type source create_wtut_sc.tcl.

 Note: If presented with a dialog box stating that wtut_sc.ise appears to be locked, click Yes to continue project creation.
3. From Project Navigator, select **File > Open Project**.

![Open Project Dialog Box](image)

Figure 3-4: Open Project Dialog Box

4. Browse to the directory `c:\xilinx\ISEexamples\wtut_sc`.
5. Double-click the project file, `wtut_sc.ise`.

Stopping the Tutorial

- If you need to stop the tutorial at any time, save your work by selecting **File > Save All**.

Design Description

The design used in this tutorial is a hierarchical, schematic-based design, which means that the top-level design file is a schematic sheet that refers to several other lower-level macros. The lower-level macros are a variety of different types of modules, including schematic-based modules, a CORE Generator module, a state machine module, an Architecture Wizard module, and HDL modules.

The runner’s stopwatch design begins as an unfinished design. Throughout the tutorial, you will complete the design by creating some of the modules and by completing others from existing files. A schematic of the completed stopwatch design is shown in the following figure. Through the course of this chapter, you will create these modules, instantiate them, and then connect them.
After the design is complete, you will simulate the design to verify its functionality. For more information about simulating your design, see Chapter 4, “Behavioral Simulation.”

There are three external inputs and twelve external outputs in the completed design. The following sections summarize the inputs and outputs, and their respective functions.

![Completed Watch Schematic](image-url)

Figure 3-5: Completed Watch Schematic

There are three external inputs and twelve external outputs in the completed design. The following sections summarize the inputs and outputs, and their respective functions.
Inputs

The following are input signals for the runner’s stopwatch design:

- **STARTSTOP**
 Starts and stops the stopwatch. This is an active-low signal that acts like the start/stop button on a runner’s stopwatch.

- **RESET**
 Resets the stopwatch to 00.00.

- **CLK**
 System clock for the stopwatch design.

Outputs

The following are output signals for the design:

- **SEG_A, SEG_B, SEG_C, SEG_D, SEG_E, SEG_F, SEG_G, SEG_DP**.
 These outputs drive the individual segments and the decimal point for all four digits of the stopwatch design. The digits of the stopwatch are displayed on 7-segment LED displays.

- **AN(3:0)**
 This is a one-hot vector signal that drives the anodes of the four 7-segment LED displays to determine which display will be lighted.

Functional Blocks

The completed design consists of the following functional blocks. Most of these blocks do not appear on the schematic sheet in the project until after you create and add them to the schematic during this tutorial.

- **CLK_DIV_262k**
 Schematic-based macro that divides a clock frequency by 262,144.

- **DCM1**
 Clocking Wizard macro with internal feedback, frequency controlled output, and duty-cycle correction. The CLKFX_OUT output converts the 50Mhz clock of the Spartan-3 demo board to 26.2144Mhz.

- **DEBOUNCE**
 Schematic module that implements a simplistic debounce circuit for the strtstop input signal.

- **HEX2LED**
 HDL-based macro that decodes each of the digit values from binary to a 7-segment display format.

- **LED_control**
 Schematic module that controls the data multiplexing to the four, 7-segment LED displays.

- **STATMACH**
 State Machine macro that is defined and implemented in StateCAD.
Design Entry

In this hierarchical design, you will create various types of macros, including schematic-based macros, HDL-based macros, state machine macros, and CORE Generator macros. You will learn the process for creating each of these types of macros, and you will connect the macros together to create the completed stopwatch design. All procedures used in the tutorial can be used later for your own designs.

Opening the Schematic File in the Xilinx Schematic Editor

The stopwatch schematic available in the wtut_sc project is incomplete. In this tutorial, you will update the schematic in the Schematic Editor. After you have created the project in ISE, you can now open the stopwatch.sch file for editing. To open the schematic file, double-click stopwatch.sch in the Sources window.
The stopwatch schematic diagram opens in the Project Navigator Workspace. You will see the unfinished design with elements in the lower right corner as shown in the figure below.

Figure 3-6: Incomplete Stopwatch Schematic

Manipulating the Window View

The View menu commands enable you to manipulate how the schematic is displayed. Select **View > Zoom > In** until you can comfortably view the schematic.

The schematic window can be undocked from the Project Navigator framework by selecting **Windows > Float** while the schematic is selected in the workspace.

After being undocked, the schematic window can be redocked by selecting **Windows > Dock**.

Creating a Schematic-Based Macro

A schematic-based macro consists of a symbol and an underlying schematic. You can create either the underlying schematic or the symbol first. The corresponding symbol or schematic file can then be generated automatically.
In the following steps, you will create a schematic-based macro by using the New Source Wizard in Project Navigator. An empty schematic file is then created, and you can define the appropriate logic. The created macro is then automatically added to the project’s library.

The macro you will create is called time_cnt. This macro is a binary counter with three, 4-bit outputs, representing the minutes and seconds values of the stopwatch.

To create a schematic-based macro:

1. In Project Navigator, select Project > New Source. The New Source dialog box opens:

 ![New Source Dialog Box](Image)

 The New Source dialog displays a list of all of the available source types.

2. Select Schematic as the source type.

3. Enter time_cnt as the file name.

4. Click Next and click Finish.

 A new schematic called time_cnt is created, added to the project, and opened for editing.

Defining the time_cnt Schematic

You have now created an empty schematic for time_cnt. The next step is to add the components that make up the time_cnt macro. You can then reference this macro symbol by placing it on a schematic sheet.

Adding I/O Markers

I/O markers are used to determine the ports on a macro, or the top-level schematic. The name of each pin on the symbol must have a corresponding connector in the underlying schematic. Add I/O markers to the time_cnt schematic to determine the macro ports.
To add the I/O markers:

1. Select **Tools > Create I/O Markers**.
 The Create I/O Markers dialog box opens.

2. In the Inputs box, enter **clk,ce,clr**.

3. In the Outputs box, enter **sec_lsb(3:0),sec_msb(3:0),minutes(3:0)**.

4. Click **OK**. The six I/O markers are added to the schematic sheet.

 Note: The Create I/O Marker function is available only for an empty schematic sheet. However, I/O markers may be added to nets at any time by selecting **Add > I/O Marker** and selecting the desired net.

Adding Components to time_cnt

Components from the device and project libraries for the given project are available from the Symbol Browser, and the component symbol can be placed on the schematic. The available components listed in the Symbol Browser are arranged alphabetically within each library.

1. From the menu bar, select **Add > Symbol** or click the **Add Symbol** icon from the Tools toolbar.

![Creating I/O Markers](image1)

Figure 3-8: Creating I/O Markers

![Add Symbol Icon](image2)

Figure 3-9: Add Symbol Icon
This opens the Symbol Browser to the left of the schematic editor, displaying the libraries and their corresponding components.

![Symbol Browser]

Figure 3-10: Symbol Browser

The first component you will place is a CD4RE, a 4-bit BCD counter with clock enable and synchronous clear.

2. Select the CD4RE component, using one of two ways:
 - Highlight the Counter category from the Symbol Browser dialog box and select the component `cd4re` from the symbols list.
 - or
 - Select All Symbols and type CD4RE in the Symbol Name Filter at the bottom of the Symbol Browser window.

3. Move the mouse back into the schematic window.
 You will notice that the cursor has changed to represent the CD4RE symbol.

4. Move the symbol outline to the location shown in Figure 3-11 and click the left mouse button to place the object.

 Note: You can rotate new components being added to a schematic by selecting Ctrl+R. You can rotate existing components by selecting the component, and then selecting Ctrl+R.
5. Place the second CD4CE symbol on the schematic by moving the cursor with attached symbol outline to the desired location, and clicking the left mouse button. See Figure 3-11.

Figure 3-11: Partially Completed time_cnt Schematic

Placing the Remaining Components

Follow the steps above in “Adding Components to time_cnt” to place the following components on the schematic sheet:

- OR2
- CB4RE
- AND2
- AND5b2

Refer to Figure 3-11 for placement locations.

To exit the Symbols Mode, press the **Esc** key on the keyboard.
For a detailed description of the functionality of each of these components, right-click on the component and select **Object Properties**. In the Object Properties window, select **Symbol Info**. Symbol information is also available in the Libraries Guides, accessible from the collection of software manuals on the web at http://www.xilinx.com/support/sw_manuals/xilinx8/.

Correcting Mistakes

If you make a mistake when placing a component, you can easily move or delete the component. To move the component, click the component and drag the mouse around the window. Delete a placed component in one of two ways:

- Click the component and press the **Delete** key on your keyboard.
- Right-click the component and select **Delete**.

Drawing Wires

Use the Add Wire icon in the Tools toolbar to draw wires (also called nets) to connect the components placed in the schematic.

Perform the following steps to draw a net between the AND2 and CB4RE components on the *time_cnt* schematic.

1. Select **Add > Wire** or click the **Add Wires** icon in the Tools toolbar.

2. Click the output pin of the AND2 and then click the destination pin CE on the CB4RE component. The Schematic Editor draws a net between the two pins.

Draw the nets to connect the remaining components as shown in **Figure 3-11**. To specify the shape of the net:

1. Move the mouse in the direction you want to draw the net.
2. Click the mouse to create a 90-degree bend in the wire.

To draw a net between an already existing net and a pin, click once on the component pin and once on the existing net. A junction point is drawn on the existing net.

Adding Buses

In the Schematic Editor, a bus is simply a wire that has been given a multi-bit name. To add a bus, use the methodology for adding wires and then add a multi-bit name. Once a bus has been created, you have the option of “tapping” this bus off to use each signal individually.

The next step is to create three buses called sec_lsb(3:0), sec_msb(3:0) and minutes(3:0), each consisting of the 4 output bits of each counter in the *time_cnt* schematic. The results can be found in the completed schematic.
To add the buses sec_lsb(3:0), sec_msb(3:0) and minutes(3:0) to the schematic, perform the following steps:

1. Select **Add > Wire** or click the **Add Wires** icon in the Tools toolbar.
2. Click in the open space just above and to the right of the top CD4RE and then click again on pin of the sec_lsb(3:0) I/O marker. The wire should automatically be drawn as a bus with the name matching that of the I/O marker.
3. To verify this, zoom in. The bus is represented visually by a thicker wire.

4. Repeat Steps 1 through 3 for the sec_msb(3:0) and minutes(3:0) busses.
5. After adding the three buses, press **Esc** or right-click at the end of the bus to exit the Add Wire mode.

Adding Bus Taps

Next, add nets to attach the appropriate pins from the CB4RE and CD4RE counters to the buses. Use Bus Taps to tap off a single bit of a bus and connect it to another component.

Note: Zooming in on the schematic will enable greater precision when drawing the nets.

To tap off a single bit of each bus:

1. Select **Add > Bus Tap** or click the **Add Bus Tap** icon in the Tools toolbar.

 ![Add Bus Tap Icon](image)

 Figure 3-14: Add Bus Tap Icon

 The cursor changes, indicating that you are now in Draw Bus Tap mode.

2. From the Options tab to the left of the schematic, choose the correct orientation for the bus tap.
3. Place the tap on one of the three busses so that the wire side of the bus tap is pointing to an unconnected pin.
4. Repeat Steps 1 to 3 to tap off four bits from each of the three busses.
To connect each of the tap off bits:

1. Select **Add > Wire** or click the **Add Wire** icon in the Tools toolbar.
2. Draw a wire from each bus tap pin to the adjacent component pin.
3. Select **Add > Net Name** or click the **Add Net Name** icon in the Tools toolbar.
4. Type `sec_lsb(0)` in the Name field of the options tab.
 The net name is now at the end of your cursor.
5. Select **Increase the name** in the Add Net Names Options dialog box.
6. With the Increment Name option selected, start at the top net and continue clicking down until you have named the fourth and final net `sec_lsb(3)`.

Note: The Schematic Editor names the bus taps incrementally as they are drawn. Alternatively, name the first net `sec_lsb(3)` and select **Decrease the name** in the Add Net Names Options dialog box, and nets are named from the bottom up.

7. Repeat Steps 4 through 6 for the `sec_msb(3:0)` bus and minutes(3:0).
8. Press **Esc** to exit the Add Net Name mode.
9. Compare your `time_cnt` schematic with Figure 3-16 to ensure that all connections are made properly.

Note: It is the name of the wire that makes the electrical connection between the bus and the wire (e.g. `sec_msb(2)` connects to the third bit of `sec(3:0)`). The bus tap figure is for visual purposes only. The following section shows additional electrical connections by name association.

Adding Net Names

First, add a hanging wire to each of the five inputs of the AND5b2 component.

Next, add net names to the wires. To add the net names:

1. Select **Add > Net Name** or click the **Add Net Name** icon in the Tools toolbar.
2. Type `minute_en` in the Name box of the Add Net Name options dialog box.
 The net name `minute_en` is now attached to the cursor.
3. Click the net attached to the output of the AND5b2 component.
 The name is then attached to the net. The net name will appear above the net if the name is placed on any point of the net other than an end point.
4. Type `msb_en` in the Name box of the Add Net Name Options dialog box.
 The net name `msb_en` is now attached to the cursor.
5. Click the net attached to the output of the AND2 component.
6. With the net name `msb_en` still attached to the cursor, click on the net attached to the top input pin of the AND5b2 component.

Note: The two wires named `msb_en` are now electrically connected. In this case, the nets do not need to be physically connected on the schematic to make the logical connection.
Finally, connect the remaining AND5b2 inputs through net name association.

1. Select Add > Net Name or click the Add Net Name icon in the Tools toolbar.
2. Type sec_msb(0) in the Name box of the Add Net Name options dialog box.

 Note: The Options window changes depending on which tool you have selected in the Tools toolbar.

3. Select Increase the name in the Add Net Names options dialog box.

 The net name sec_msb(0) is now attached to the cursor.

4. Click on one of the AND5b2 input nets that does not have an inversion bubble.

5. Click on the remaining AND5b2 input nets so that the wires named sec_msb(1) and sec_msb(3) are attached to the inputs with inversion bubbles. Refer to Figure 3-16.

 Note: If the nets appear disconnected, select View > Refresh to refresh the screen.

![Completed time_cnt Schematic](image)

Figure 3-16: Completed time_cnt Schematic

Checking the Schematic

The time_cnt schematic is now complete.

Verify that the schematic does not contain logical errors by running a design rule check (DRC). To do this, select Tools > Check Schematic. The Console window should report that no errors or warnings are detected. If an error or warning is displayed, fix the reported problem before proceeding.
Chapter 3: Schematic-Based Design

Saving the Schematic

1. Save the schematic by selecting **File > Save**, or by clicking the **Save** icon in the toolbar.

![Save Icon](Image)

Figure 3-17: Save Icon

Note: When you save a macro, the Schematic Editor checks the I/O markers against the corresponding symbol, if one exists. If there is a discrepancy, you can let the software update the symbol automatically, or you can modify the symbol manually. I/O markers connect signals between levels of hierarchy and specify the ports on top-level schematic sheets.

2. Close the `time_cnt` schematic.

Creating and Placing the `time_cnt` Symbol

The next step is to create a “symbol” that represents the `time_cnt` macro. The symbol is an instantiation of the macro. After you create a symbol for `time_cnt`, you will add the symbol to a top-level schematic of the stopwatch design. In the top-level schematic, the symbol of the `time_cnt` macro will be connected to other components in a later section in this chapter.

Creating the `time_cnt` symbol

You can create a symbol using either a Project Navigator process or a Tools menu command.

To create a symbol that represents the `time_cnt` schematic using a Project Navigator process:

1. In the Sources window, select `time_cnt.sch`.
2. In the Processes window, click the `+` beside Design Utilities to expand the hierarchy.
3. Double-click `Create Schematic Symbol`.

To create a symbol that represents the `time_cnt` schematic using a Tools menu command:

1. With a schematic sheet open, select **Tools > Symbol Wizard**.
2. In the Symbol Wizard, select **Using Schematic**, and then select `TIME_CNT` in the schematic value field.
3. Click **Next**, then **Next**, then **Next**, and then **Finish** to use the wizard defaults.
4. View and then close the `time_cnt` symbol.

Placing the `time_cnt` Symbol

Next, place the symbol that represents the macro on the top-level schematic (`stopwatch.sch`).

1. In the Sources window, double-click `stopwatch.sch` to open the schematic.
2. Select the **Add Symbol** icon.

![Add Symbol Icon](Image)

Figure 3-18: Add Symbol Icon
3. In the Symbol Browser, select the local symbols library (c:\xilinx\ISEexamples\wtut_sc), and then select the newly created time_cnt symbol.

4. Place the time_cnt symbol in the schematic at approximately grid position [900,2100]. Grid position is shown at the bottom right corner of the Project Navigator window, and is updated as the cursor is moved around the schematic.

 Note: Do not worry about connecting nets to the pins of the time_cnt symbol. You will do this after adding other components to the stopwatch schematic.

5. Save the changes and close stopwatch.sch.

Creating a CORE Generator Module

CORE Generator is a graphical interactive design tool that enables you to create high-level modules, such as counters, shift registers, RAM and multiplexers. You can customize and pre-optimize the modules to take advantage of the inherent architectural features of the Xilinx FPGA architectures, such as Fast Carry Logic, SRL16s, and distributed and block RAM.

In this section, you will create a CORE Generator module called ten_cnt. Ten_cnt is a 4-bit binary encoded counter. Two instances of ten_cnt will be used to produce the tenths and hundredths digits of the stopwatch’s time value.

Creating a CORE Generator Module

To create a CORE Generator module:

1. In Project Navigator, select **Project > New Source.**
2. Select **IP(Coregen & Architecture Wizard).**
3. Type **ten_cnt** in the File Name field.
4. Click **Next.**
5. Select **Basic Elements > Counters > Binary Counter.**
6. Click **Next** and click **Finish** to open the Binary Counter customization graphical user interface (GUI). This customization GUI enables you to customize the counter to the design specifications.
7. Fill in the Binary Counter dialog box with the following settings:
 - Component Name: **ten_cnt**
 - Defines the name of the module.
 - Output Width: **4**
 - Defines the width of the output bus.
 - Count Restrictions:
 - Step value: **1**
 - Select **Restrict Count**
 - Final Count to value: **9** (This dictates the maximum count value)
 - Count Mode: **Up**
Chapter 3: Schematic-Based Design

Click Next.

Asynchronous Settings:
- Init: Selected
- Asynchronous Init Value: 0

Synchronous Settings: None selected

Clock Enable:
- Select CE

Click Next.

Load Options: None selected

Threshold Options:
- Asynchronous Threshold Output: Selected
- Synchronous Threshold Output: Not selected
- Cycle Early Threshold Output: Not selected
- Threshold Value: 9

Signal goes high when the value specified has been reached.

Figure 3-19: CORE Generator, Binary Counter Customization GUI
8. Check that only the following pins are used (used pins will be highlighted on the symbol on the left side of the CORE Generator window):
 - clk
 - ce
 - ainit
 - Thresh0
 - [3:0]q

9. Click Finish.
 The module is created and automatically added to the project library.

 Note: A number of files are added to the project directory. Some of these files are:
 - ten_cnt.sym
 This file is a schematic symbol file.
 - ten_cnt.vhd or ten_cnt.v
 These are HDL wrapper files for the core and are used only for simulation.
 - ten_cnt.edn
 This file is the netlist that is used during the Translate phase of implementation.
 - ten_cnt.xco
 This file stores the configuration information for the Tenths module and is used as a project source.

Creating a State Machine Module

With the State Diagram Editor, you can graphically create finite state machines that include states, inputs/outputs, and state transition conditions. Transition conditions and state actions are typed into the diagram using language independent syntax. The State Diagram Editor then exports the diagram to either VHDL, Verilog or ABEL code. The resulting HDL file is finally synthesized to create a netlist and/or macro, for you to place on a schematic sheet.

For this tutorial, a partially complete state machine diagram is provided. In the next section, you will complete the diagram, synthesize the module into a macro and place it on the stopwatch schematic.

Note: The State Diagram Editor is only available for Windows operating systems. A completed VHDL and Verilog file for the State Machine diagram in this section has been provided for you in the wtut_sc\wtut_sc_completed directory. To skip this section, copy either statmach.v or statmach.vhd from the c:\xilinx\ISEexamples\wtut_sc\wtut_sc_completed directory to the c:\xilinx\ISEexamples\wtut_sc directory, then proceed to “Creating the State Machine Symbol.”

To open the partially complete diagram, first add the statmach.dia file to the project by selecting **Project > Add Source** and selecting statmach.dia. Then, double-click statmach.dia in the Sources tab. The State Diagram Editor is launched with the partially completed state machine diagram.

In the incomplete state machine diagram below:
- The circles represent the various states.
- The black expressions are the transition conditions, defining how you move between states.
• The output expressions for each state are found in the circles representing the states.
• The transition conditions and the state actions are written in language-independent syntax and are then exported to Verilog, VHDL, or ABEL.

Adding New States

Complete the state machine by adding a new state called clear. To do so:
1. Click the Add State icon in the vertical toolbar.

2. Place the new state on the left-hand side of the diagram, as shown in Figure 3-22.
3. Click the mouse to place the state bubble.
The state is given the default name, STATE0.

4. Double-click STATE0 in the state bubble, and change the name of the state to clear.
 Note: The name of the state is for your use only and does not affect synthesis. Any name is fine.

5. Click OK.

To change the shape of the state bubble, click the bubble and drag it in the direction you wish to stretch the bubble.

Adding a Transition

A transition defines the movement between states of the state machine. Transitions are represented by arrows in the editor. You will add a transition from the clear state to the zero state in the following steps. Because this transition is unconditional, there is no transition condition associated with it.

1. Click the **Add Transition** icon in the vertical toolbar.

2. Double-click the **clear** state (one click to select it, and one click to start the transition.)

3. Click the **zero** state to complete the transition arrow.
4. To manipulate the arrow’s shape, click and drag it in any directory.

5. Click the Select Objects (or Pointer) icon in the vertical toolbar to exit the Add Transition mode.

Adding a State Action

A state action dictates how the outputs should behave in a given state. You will add two state actions to the clear state: one to drive the clken output to 0 and one to drive the RST output to 1.

To add a state action:
1. Double-click the clear state.
The Edit State dialog box opens and you can begin to create the desired outputs.

2. Select the **Output Wizard** button.

3. In the Logic Wizard, enter the following values:

 \[
 \begin{align*}
 \text{DOUT} &= \text{rst}, \ \text{CONSTANT} = '1'; \\
 \text{DOUT} &= \text{clken}, \ \text{CONSTANT} = '0'; \\
 \end{align*}
 \]

4. Click **OK** to enter each individual value.

5. Click **OK** to exit the Edit State dialog box. The outputs are now added to the state.

![Edit State Dialog Box](image)

Figure 3-26: Edit State Dialog Box

![Adding State Outputs](image)

Figure 3-27: Adding State Outputs
Adding a State Machine Reset Condition

Using the State Machine Reset feature, specify a reset condition for the state machine. The state machine initializes to this specified state and enters the specified state whenever the reset condition is met. In this design, add a reset condition that sends the state machine to the `clear` state whenever either the reset signal is asserted high, or the DCM_lock signal is de-asserted low.

1. Click the **Add Reset** icon in the vertical toolbar.

2. Click the diagram near the `clear` state, as shown in the diagram below.

3. The cursor is automatically attached to the transition arrow for this reset. Move the cursor to the `clear` state, and click the **state bubble**.

4. A question is then asked: “Should this reset be asynchronous (Yes) or synchronous (No)?” Answer **Yes**.

5. Double-click the newly created RESET condition and edit the condition field to read: `state_reset='1',` then click **OK**.

Creating the State Machine HDL output file

1. Select **Options > Configuration**.
2. In the Language section, select either **Verilog** or **VHDL** as desired.
3. In the Language Vendor section select **Xilinx XST**.
4. Click **OK**.
5. To generate the HDL file, select the **Generate HDL** icon in the toolbar.
6. A Results window is displayed listing the compile status. Click **OK**.
7. A browser opens displaying the generated HDL file. Examine the code and then close the browser.
8. Save your changes by selecting File > Save.
9. Close the State Diagram Editor.

Creating the State Machine Symbol

In this section, you will create a macro symbol for the state machine that you can place on the stopwatch schematic. The macro symbol is added to the project library.

1. In Project Navigator, select Project > Add Source.
2. Select statmach.v or statmach.vhd (this is the HDL file generated by State Diagram Editor) and click Open.
 The file statmach.v(hd) is added to the project in Project Navigator.
3. In the Sources tab, select statmach.vhd or statmach.v.
4. In the Processes tab, click the + beside Design Utilities to expand the hierarchy.
5. Double-click Create Schematic Symbol.

Creating a DCM Module

The Clocking Wizard, a Xilinx Architecture Wizard, enables you to graphically select Digital Clock Manager (DCM) features that you wish to use. In this section, you will create a basic DCM module with CLK0 feedback and duty-cycle correction.

Using the Clocking Wizard

Create the DCM1 module as follows:

1. Select Project > New Source.
2. In the New Source dialog box, select the IP (Coregen & Architecture Wizard) source type, and type the filename dcm1.
3. Click Next.
4. Select **FPGA Features and Design > Clocking > Virtex-II Pro, Virtex-II, Spartan-3 > Single DCM** in the Clocking hierarchy.

5. Click **Next**, and then click **Finish**.
6. Verify that **RST, CLK0** and **LOCKED** are selected.
7. Select the **CLKFX**.
8. Type **50** and select **MHz** for the Input Clock Frequency.
9. Verify the following settings:
 - Phase Shift: **None**
 - Clkin Source: **External, Single**
 - Feedback Source: **Internal**
 - Feedback Value: **1X**
 - Use Duty Cycle Correction: **Selected**
10. Click the Advanced button.
11. Select the Wait for DCM Lock before DONE Signal goes high option.
12. Click OK.
 An informational message about the LCK_cycle and the STARTUP_WAIT Bitgen options appears.
13. Click OK, click Next, click Next.
14. In the Clock Frequency Synthesizer window, type 26.2144 and select MHz in the Use output frequency box.

\[
\frac{26.2144 \text{MHz}}{2^{18}} = 100 \text{Hz}
\]

15. Click Next and then Finish.
 The file dcm1.xaw is added to the project.

Creating the dcm1 Symbol

Next, create a symbol representing the dcm1 macro. This symbol will be added to the top-level schematic (stopwatch.sch) a little later.

1. In Project Navigator, in the Sources tab, select dcm1.xaw.
2. In the Processes tab, double-click Create Schematic Symbol.
Creating an HDL-Based Module

With ISE, you can easily create modules from HDL code. The HDL code is connected to your top-level schematic design through instantiation and compiled with the rest of the design.

Next, you will create a new HDL module. This macro serves to convert the 4-bit binary outputs of the ten_cnt and time_cnt modules into a 7-segment LED display format.

Using the New Source Wizard and ISE Text Editor

Create a file using the New Source Wizard, specifying the name and ports of the component. The resulting HDL file is then modified in the ISE Text Editor.

To create the source file:
1. Select Project > New Source.
 A dialog box opens in which you specify the type of source you want to create.
2. Select VHDL Module or Verilog Module, depending on your coding preference.
3. In the File Name field, type hex2led.
4. Click Next.

The hex2led component has a 4-bit input port named hex, and a 7-bit output port named led. To enter these ports:
1. Click in the Port Name field and type HEX.
2. Click in the Direction field and set the direction to in.
3. Check the Bus designation box.
4. In the MSB field enter 3, and in the LSB field enter 0. Refer to Figure 3-32.

5. Repeat the previous steps for the LED[6:0] output bus. Be sure that the direction is set to out, MSB is set to 6 and LSB is set to 0.
6. Click Next to complete the Wizard session.
A description of the module displays.

7. Click **Finish** to open the empty HDL file in ISE Text Editor.

The VHDL file is displayed in **Figure 3-33**. The Verilog HDL file is displayed in **Figure 3-34**.

```vhdl
-- DESIGN_NAME:
7 -- Module Name: hex2led - Behavioral
8 -- Project Name:
9 -- Target Device:
10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 ---------------------------------------------------------------
20 Library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24 25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 ----#library FIFOs;
28 ----#use XILINX.COMponents;
29 entity hex2led is
30   Port ( HEX : in std_logic_vector(3 downto 0);
31     LED : out std_logic_vector(6 downto 0);)
32 end hex2led;
33 architecture #behavioral of hex2led is
34 begin
35   
36 Figure 3-33: VHDL File in ISE Text Editor
37
38 ```

```verilog
```
In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic file structure is already in place. Keywords are displayed in blue, comments in green, and values are black. The file is color-coded to enhance readability and recognition of typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates that represent commonly used logic components, such as counters, D flip-flops, multiplexers, and primitives. You will use the HEX2LED Converter template for this exercise. This template provides source code to convert a 4-bit value to 7-segment LED display format.

**Note:** You can add your own templates to the Language Templates for components or constructs that you use often.

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select **Edit > Language Templates**.

   Each HDL language in the Language Templates is divided into five sections: Common Constructs, Device Primitive Instantiation, Simulation Constructs, Synthesis Constructs and User Templates. To expand the view of any of these sections, click the + next to the topic. Click any of the listed templates to view the template contents in the right pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Constructs hierarchy, expand the Coding Examples hierarchy, expand the Misc hierarchy, and select the template called **7-Segment Display Hex Conversion**. Use the appropriate template for the language you are using.

   Once the template is selected in the hierarchy, the contents display in the right pane.
Adding a Language Template to Your File

You will now use the drag and drop method for adding templates to your HDL file. Refer to Working with Language Templates in the ISE Help for additional usability options.

To add the template to your HDL file using the drag and drop method:
1. Select **Windows > Tile Vertically** to show both the HDL file and the Language Templates window.
2. Click and drag the 7-Segment Display Hex Conversion name from the Language Templates topology into the `hex2led.vhd` file under the architecture, begin statement, or into the `hex2led.v` file under the module declaration.
3. Close the Language Templates window.
4. (Verilog only) After the input and output statements, and before the HEX2LED converter that you just added, add the following line of code to the HDL file to allow an assignment:
   ```verilog
 reg [6:0] LED;
   ```
5. (Verilog only) Replace the two `<4-bit_hex_input>` and the sixteen `<7-seg_output>` entries with `HEX` and `LED` respectively.

You now have complete and functional HDL code.

6. Save the file by selecting **File > Save**.
7. Select `hex2led` in the Sources tab.
8. In the Processes tab, double-click **Check Syntax**.
9. Close the ISE Text Editor.

Creating the hex2led Symbol

Next, create the schematic symbol representing the HEX2LED HDL in Project Navigator.

1. In the Sources tab, select `hex2led.vhd` or `hex2led.v`.
2. In the Processes tab, click the `+` beside Design Utilities to expand the hierarchy.
3. Double-click **Create Schematic Symbol**.

You are now ready to place the hex2led symbol on the stopwatch schematic.

Placing the stmach, ten_cnt, clk_div_262k, DCM1, debounce, and hex2led Symbols

You can now place the stmach, ten_cnt, clk_div_262k, DCM1, debounce, and hex2led symbols on the stopwatch schematic (`stopwatch.sch`). In Project Navigator, double-click `stopwatch.sch`. The schematic file opens in the Workspace.

1. Select **Add > Symbol** or click the **Add Symbol** icon from the Tools toolbar.

   ![Add Symbol Icon](Figure 3-36: Add Symbol Icon)

This opens the Symbol Browser to the left of the Schematic Editor, which displays the libraries and their corresponding components.
2. View the list of available library components in the Symbol Browser.
3. Locate the project-specific macros by selecting the project directory name in the Categories window.
4. Select the appropriate symbol, and add it to the stopwatch schematic in the approximate location, as shown in Figure 3-37. **Note:** Do not worry about drawing the wires to connect this symbol. You will connect components in the schematic later in the tutorial.
5. Save the schematic.
Hierarchy Push/Pop

First, perform a hierarchy “push down,” which enables you to focus in on a lower-level of the schematic hierarchy to view the underlying file. Push down into the clk_div_262k macro—which is a schematic-based, user-created macro—and examine its components.

To push down into clk_div_262k from the top-level, stopwatch schematic:

1. Click clk_div_262k symbol in the schematic, and select the Hierarchy Push icon. You can also right-click the macro and select Push into Symbol.

   Figure 3-38: Hierarchy Push Icon

In the clk_div_262k schematic, you see a series of shift registers (SRL16). This macro illustrates how SRL16s can be used to create a clock divider of any power of 2, without using an excess number of flip-flops.

2. After examining the macro, return to the top-level schematic by selecting View > Pop to Calling Schematic, or select the Hierarchy Pop icon when nothing in the schematic is selected. You can also right-click in an open space of the schematic and select Pop to Calling Schematic.

   Figure 3-40: Hierarchy Pop Icon
Specifying Device Inputs/Outputs

Use the I/O marker to specify device I/O on a schematic sheet. All of the Schematic Editor schematics are netlisted to VHDL or Verilog and then synthesized by the synthesis tool of choice. When the synthesis tool synthesizes the top-level schematic’s HDL, the I/O markers are replaced with the appropriate pads and buffers.

Adding Input Pins

Next, add three input pins to the stopwatch schematic: CLK, RESET and STRTSTOP.

To add these components:
1. Draw a hanging wire to the two inputs of dcm1.
2. Draw a hanging wire to the sig_in input of the debounce symbol.
   Refer to “Drawing Wires” for detailed instructions.

Adding I/O Markers and Net Names

It is important to label nets and buses for several reasons:

- It aids in debugging and simulation, as you can more easily trace nets back to your original design.
- Any nets that remain unnamed in the design will be given generated names that will mean nothing to you later in the implementation process.
- Naming nets also enhances readability and aids in documenting your design.

Label the three input nets you just drew. Refer to the completed schematic below. To label the RESET net:
1. Select Add > Net Name.
2. Type RESET into the Name box.
   The net name is now attached to the cursor.
3. Place the name on the leftmost end of the net, as illustrated in Figure 3-41.
4. Repeat Steps 1 through 3 for the STRTSTOP and CLK pins.
   Once all of the nets have been labeled, add the I/O marker.
5. Select Add > I/O Marker.
6. Click and drag a box around the three labeled nets to place an input port on each net.

![Labeled Nets with I/O Markers](image)

*Figure 3-41: Labeled Nets with I/O Markers*
Assigning Pin Locations

Xilinx recommends that you let the automatic placement and routing (PAR) program define the pinout of your design. Pre-assigning locations to the pins can sometimes degrade the performance of the place-and-route tools. However, it may be necessary at some point to lock the pinout of a design so that it can be integrated into a Printed Circuit Board (PCB).

For this tutorial, the inputs and outputs will be locked to specific pins in order to place and download the design to the Spartan-3 demo board. Because the tutorial stopwatch design is simple and timing is not critical, the example pin assignments will not adversely affect the ability of PAR to place and route the design.

Assign a LOC parameter to the output nets on the stopwatch schematic, as follows:

1. Right-click on the an(3:0) net and select Object Properties from the right-click menu.
2. Click the New button under Instance Attributes to add a new property.
3. Enter LOC for the Attribute Name and e13,f14,g14,d14 for the Attribute Value.
4. Click OK to return to the Object Properties dialog box.
5. To make the LOC attribute visible, select the Add button adjacent to the LOC attribute in the Attribute window.
6. In the Net Attribute Visibility window, select Add and then OK. This will display the LOC attribute on the schematic above the an(3:0) bus.

The above procedure constrains an(3) to pin e13, an(2) to pin f14. The remaining pin location constraints will be added in “Using the Constraints Editor” and “Using the Pin-out Area Constraints Editor (PACE)” of Chapter 5, “Design Implementation”.

Note: To turn off the Location constraint without deleting it, select the loc attribute, and click Edit Traits. Select VHDL or Verilog and deselect Write this attribute.

Completing the Schematic

Complete the schematic by wiring the components you have created and placed, adding any additional necessary logic, and labeling nets appropriately. The following steps guide you through the process of completing the schematic. You may also want to use the completed schematic shown below to complete the schematic. Each of the actions referred to in this section has been discussed in detail in earlier sections of the tutorial. Please see the earlier sections for detailed instructions.
To complete the schematic diagram:

1. Draw a wire between the CLKFX_OUT pin of DCM1 and the clk_in pin of the clk_div_262k macro. (See “Drawing Wires.”)
2. Label the wire **clk_clk_26214k**. (See “Adding Net Names.”)
3. Draw a hanging wire to the LOCKED_OUT and clk_out pins of DCM1 and name the wires **locked** and **clk_int** respectively. To terminate a hanging wire, double-click it. See “Drawing Wires” and “Adding Net Names.”
4. Draw a hanging wire to the clk input of both the debounce and statmach macros wires. (See “Drawing Wires.”)
5. Name both wires \texttt{clk\_100}. (See “Adding Net Names.”)

\textbf{Note:} Remember that nets are logically connected if their names are the same, even if the net is not physically drawn as a connection in the schematic. This method is used to make the logical connection of clk\_int and several other signals.

6. Draw wires between the sig\_out pin of the debounce component and the strtstop pin of the statmach macro. (See “Drawing Wires.”)

7. Label the net \texttt{strtstop\_debounced}.

8. Add hanging wires to the DCM\_lock pin and the reset pin of the statmach macro. Name them \texttt{locked} and \texttt{reset}, respectively.

9. Place an AND2 component to the left of the lower ten\_cnt macro. See “Adding Components to time\_cnt.”

10. Draw a wire to connect the output of the AND2 with the CE pin of the TEN\_CNT macro. See “Drawing Wires.”

11. Draw a wire to connect the Q\_THRES0 pin of the upper TEN\_CNT macro to one of the inputs to the AND2. See “Drawing Wires.”

12. Draw a hanging wire to the clken output of the statmach component. Label the wire \texttt{clk\_en\_int}.

13. Draw a hanging wire to the ce pin of the upper TEN\_CNT macro and another to the remaining input of the AND2 component. Name both wires \texttt{clk\_en\_int}.

14. Place a second AND2 component to the left of the TIME\_CNT macro. See “Adding Components to time\_cnt.”

15. Draw a wire to connect the output of the AND2 with the CE pin of the TIME\_CNT macro. See “Drawing Wires.”

16. Draw a wire to connect the Q\_THRES0 pin of the lower TEN\_CNT macro to one of the inputs to the second AND2 component. See “Drawing Wires.”

17. Draw a wire from the other input of the second AND2 component to the wire connected to the output of the first AND2 component.

18. Draw a hanging wire from the output of the clk\_div\_262k component and label this net \texttt{clk\_100}.

19. Draw a hanging wire from the clk pin of the TIME\_CNT macro and the clk pins of the two ten\_cnt macros. See “Drawing Wires.” Name the three newly added nets \texttt{clk\_100}.

20. Draw hanging wires from the RST output pin of the STMACH macro, to the AINIT pins of the ten\_cnt macros and the clr pin of the time\_cnt macro. See “Drawing Wires.” Label all four wires \texttt{RST\_INT}.

21. Draw wires from the bus outputs of the ten\_cnt and time\_cnt macros to the inputs of the adjacent hex2led macros. See “Drawing Wires.” Notice how the wire is automatically converted to a bus.

22. Draw hanging buses from each of the hex2led macro outputs.

23. Name the hex2led outputs nets as follows from top to bottom; hundredthsout(6:0), tenthsout(6:0), onesout(6:0), tensout(6:0), minutesout(6:0).

The schematic is now complete.

Save the design by selecting \textbf{File > Save}. 
Chapter 4

Behavioral Simulation

This chapter contains the following sections.

- “Overview of Behavioral Simulation Flow”
- “ModelSim Setup”
- “ISE Simulator Setup”
- “Getting Started”
- “Adding an HDL Test Bench”
- “Behavioral Simulation Using ModelSim”
- “Behavioral Simulation Using ISE Simulator”

Overview of Behavioral Simulation Flow

Xilinx® ISE™ provides an integrated flow with the Mentor ModelSim simulator and the Xilinx ISE Simulator that allows simulations to be run from the Xilinx Project Navigator. The examples in this tutorial demonstrate how to use the integrated flow. Whether you use the ModelSim simulator or the ISE Simulator with this tutorial, you will achieve the same results.

For additional information about simulation, and for a list of other supported simulators, see Chapter 6 of the Synthesis and Verification Guide. This Guide is accessible from within ISE by selecting Help > Software Manuals, and from the web at http://www.xilinx.com/support/sw_manuals/xilinx8/.

ModelSim Setup

In order to use this tutorial, you must install ModelSim on your computer. The following sections discuss requirements and setup for ModelSim PE, ModelSim SE, and ModelSim XE.

ModelSim PE and SE

ModelSim PE and ModelSim SE are full versions of ModelSim available for purchase directly from Mentor Graphics. In order to simulate with the ISE 8 libraries, use ModelSim 5.8 or later. Older versions may work but are not supported. For more information about purchasing ModelSim PE or SE version 5.8 or later, contact Mentor Graphics.
ModelSim Xilinx Edition

ModelSim Xilinx Edition III (MXE III) is the Xilinx version of ModelSim which is based on ModelSim PE. There are two versions: a free starter version, and a full version that can be purchased from Xilinx. To obtain the correct MXE III simulation libraries, go to the Download Center page. Be sure to select 8.2i as the ISE version.


ISE Simulator Setup

ISE Simulator is automatically installed and set up with the ISE 8.2i installer. The ISE Simulator is available on Windows 2000, Windows XP, and Red Hat Enterprise Linux 3 or 4 (32-bit) platforms only.

Getting Started

The following sections outline the requirements for performing behavioral simulation in this tutorial.

Required Files

The behavioral simulation flow requires design files, a test bench file, and Xilinx simulation libraries.

Design Files (VHDL, Verilog, or Schematic)

This chapter assumes that you have completed the design entry tutorial in either Chapter 2, “HDL-Based Design,” or Chapter 3, “Schematic-Based Design.” After you have completed one of these chapters, your design includes the required design files, and is ready for simulation.

Test Bench File

In order to simulate the design, a test bench file is required to provide stimulus to the design. VHDL and Verilog test bench files are available with the tutorial files. Or, if you prefer, you can create your own test bench file. For instructions, see “Creating a Test Bench Waveform Using the Waveform Editor.”

Xilinx Simulation Libraries

Xilinx simulation libraries are required when any Xilinx primitive is instantiated in the design. The design in this tutorial requires the use of simulation libraries because it contains instantiations of a digital clock manager (DCM) and a CORE Generator™ component. For information on simulation libraries and how to compile them, see the next section, “Xilinx Simulation Libraries.”

Xilinx Simulation Libraries

To simulate designs that contain instantiated Xilinx primitives or CORE Generator components, you must use the Xilinx simulation libraries. These libraries contain models
for each component. These models reflect the functions of each component, and provide
the simulator with the information required to perform simulation.

For a detailed description of each library, see Chapter 6 of the *Synthesis and Verification
Design Guide*. This Guide is accessible from within ISE by selecting **Help > Software

**Updating the Xilinx Simulation Libraries**

The Xilinx simulation libraries contain models that are updated on a regular basis.

- The XilinxCoreLib models are updated each time an IP Update is installed.
- All other models are updated each time a service pack is installed.

When the models are updated, you must recompile the libraries. The compiled Xilinx
simulation libraries are then available during the simulation of any design.

**ModelSim PE or SE**

If you are using ModelSim PE or SE, you must compile the simulation libraries with the
updated models. See Chapter 6 of the *Synthesis and Verification Design Guide*. This Guide is
accessible from within ISE by selecting **Help > Software Manuals**, or from the web at

**ModelSim Xilinx Edition III**

If you are using ModelSim Xilinx Edition III (MXE III), the updated models are
precompiled. They are available on the Xilinx support website. Download the latest
precompiled models from the Download Center at

**Xilinx ISE Simulator**

If you are using ISE Simulator, all the simulation libraries are precompiled. Setup is
automatically updated with the latest version of the libraries.

**Mapping Simulation Libraries in the Modelsim.ini File**

ModelSim uses the **modelsim.ini** file to determine the location of the compiled libraries.
For instance, if you compiled the UNISIM library to `c:\lib\UNISIM`, the following
mapping appears in the **modelsim.ini** file:

```
UNISIM = c:\lib\UNISIM
```

**Note:** The **modelsim.ini** is not applicable to the ISE Simulator.

ModelSim searches for a **modelsim.ini** file in the following locations until one is found:

- The **modelsim.ini** file pointed to by the MODELSIM environment variable.
- The **modelsim.ini** file in the current working directory.
- The **modelsim.ini** file in the directory where ModelSim or MXE is installed.

If the MODELSIM environment variable is not set, and the **modelsim.ini** file has not
been copied to the working directory, the **modelsim.ini** file in the installation directory
is used.

**ModelSim PE or SE**

If you are using ModelSim PE or SE, refer to the *Synthesis and Verification Design Guide* and
use COMPXLIB to compile the libraries. While compiling the libraries, COMPXLIB also
updates the modelsim.ini file with the correct mapping. Open the modelsim.ini file and make sure that the library mappings are correct.

For future projects, you can copy the modelsim.ini file to the working directory and make changes that are specific to that project, or you can use the MODELSIM environment variable to point to the desired modelsim.ini file.

ModelSim Xilinx Edition III

If you are using ModelSim Xilinx Edition III (MXE III), open the modelsim.ini file in the directory where MXE III was installed. All of the Xilinx simulation libraries are already mapped to the proper location.

ISE Simulator

The modelsim.ini file is not applicable to the ISE Simulator.

Adding an HDL Test Bench

In order to add an HDL test bench to your design project, you can either add a test bench file provided with this tutorial, or create your own test bench file and add it to your project.

Adding Tutorial Test Bench File

This section demonstrates how to add pre-existing test bench file to the project. A VHDL test bench and Verilog test fixture are provided with this tutorial.

Note: To create your own test bench file in ISE, select Project > New Source, and select either VHDL Test Bench or Verilog Text Fixture in the New Source Wizard. An empty stimulus file is added to your project. You must define the test bench in a text editor.

VHDL Design

After downloading the file to your project directory, add the tutorial VHDL test bench to the project:

1. Select Project > Add Source.
2. Select the test bench file stopwatch_tb.vhd.
3. Click Open.
4. In the Choose Source Type dialog box, select VHDL Test Bench File.
5. Click OK.

ISE recognizes the top-level design file associated with the test bench, and adds the test bench in the correct order.
Verilog Design

After downloading the file to your project directory, add the tutorial Verilog test fixture to the project:

1. Select Project > Add Source.
2. Select the file stopwatch_tb.v.
3. Click Open.
4. In the Choose Source Type dialog box, select Verilog Test Fixture File.
5. Click OK.

ISE recognizes the top-level design file associated with the test fixture, and adds the test fixture in the correct order.

Behavioral Simulation Using ModelSim

Now that you have a test bench in your project, you can perform behavioral simulation on the design using the ModelSim simulator. ISE has full integration with the ModelSim Simulator. ISE enables ModelSim to create the work directory, compile the source files, load the design, and perform simulation based on simulation properties.

To simulate with the ISE Simulator, skip to “Behavioral Simulation Using ISE Simulator.”

Whether you choose to use the ModelSim simulator or the ISE Simulator for this tutorial, the end result is the same.

To select ModelSim as your project simulator:

1. In the Sources tab, right-click the device line (xc3s200-4ft256).
2. Select Properties.
3. In the Simulator field of the Project Properties dialog box, select the Modelsim type and HDL language combination you are using.

Locating the Simulation Processes

The simulation processes in ISE enable you to run simulation on the design using ModelSim. To locate the ModelSim simulator processes:

1. In the Sources tab, select Behavioral Simulation in the Sources for field.
2. Select the test bench file (stopwatch_tb).
3. In the Processes tab, click the + beside ModelSim Simulator to expand the process hierarchy.

If the ModelSim Simulator processes do not appear, either ModelSim is not selected as the Simulator in the Project Properties dialog box, or Project Navigator cannot find modelsim.exe.

If ModelSim is installed but the processes are not available, the Project Navigator preferences may not be set correctly.

To set the ModelSim location:

1. Select Edit > Preferences.
2. Click the + next to ISE General to expand the ISE preferences
3. Click Integrated Tools in the left pane.
4. In the right pane, under Model Tech Simulator, browse to the location of the modelsim.exe file. For example,  
   c:\modeltech_xe\win32xoem\modelsim.exe

The following simulation processes are available:

- **Simulate Behavioral Model**
  This process starts the design simulation.

- **Generate Expected Simulation Results**
  This process is available only if you have a test bench waveform file from the ISE Simulator’s Test Bench Waveform Editor. If you double-click this process, ModelSim runs in the background to generate expected results and displays them in the ISE Simulator’s Test Bench Waveform Editor. See “Creating a Test Bench Waveform Using the Waveform Editor.”

**Specifying Simulation Properties**

You will perform a behavioral simulation on the stopwatch design after you have set some process properties for simulation.

ISE allows you to set several ModelSim Simulator properties in addition to the simulation netlist properties. To see the behavioral simulation properties, and to modify the properties for this tutorial:

1. In the Sources tab, select the test bench file (stopwatch_tb).
2. Click the + sign next to **ModelSim Simulator** to expand the hierarchy in the Processes tab.
3. Right-click **Simulate Behavioral Model**.
4. Select **Properties**.
5. In the Process Properties dialog box, (Figure 4-1) set the Property display level to **Advanced**. This global setting enables you to now see all available properties.
6. Change the Simulation Run Time to **2000 ns**.

![Behavioral Simulation Process Properties](image)

**Figure 4-1: Behavioral Simulation Process Properties**

7. Click **OK**.

   For a detailed description of each property available in the Process Properties dialog box, click **Help**.

---

**Performing Simulation**

Once the process properties have been set, you are ready to run ModelSim. To start the behavioral simulation, double-click **Simulate Behavioral Model**. ModelSim creates the work directory, compiles the source files, loads the design, and performs simulation for the time specified.

The majority of this design runs at 100 Hz and would take a significant amount of time to simulate. The first outputs to transition after RESET is released are the seg_dp and AN[3:0] at around 327 uS. This is why the counter may seem like it is not working in a short simulation. For the purpose of this tutorial, only the DCM signals are monitored to verify that they work correctly.

---

**Adding Signals**

To view signals during the simulation, you must add them to the Wave window. ISE automatically adds all the top-level ports to the Wave window. Additional signals are displayed in the Signal window based on the selected structure in the Structure window.

There are two basic methods for adding signals to the Simulator Wave window:

- Drag and drop from the Signal/Object window.
- Highlight signals in the Signal/Object window, and select **Add > Wave > Selected Signals**.
The following procedure explains how to add additional signals in the design hierarchy. In this tutorial, you will be adding the DCM signals to the waveform.

If you are using ModelSim version 6.0 or higher, all the windows are docked by default. To undock the windows, click the Undock icon.

To add additional signals in the design hierarchy:

1. In the Structure/Instance window, click the + next to uut to expand the hierarchy.

   Figure 4-3 shows the Structure/Instance window for the Verilog flow. The graphics and the layout of the Structure/Instance window for a schematic or VHDL flow may be different.

2. Select dcm1 in the Structure/Instance window. The signals listed in the Signal/Object window are updated.

3. Click and drag CLkin_IN from the Signal/Object window to the Wave window.

4. In the Signal/Object window, select the following signals. To select multiple signals, hold down the Ctrl key.
   - RST_IN
   - CLKFX_OUT
   - CLK0_OUT
   - LOCKED_OUT
5. Right-click in the Signal/Object window.
6. Select Add to Wave > Selected Signals.

Adding Dividers

In ModelSim, you can add dividers in the Wave window to make it easier to differentiate the signals. To add a divider called DCM Signals:

1. Click anywhere in the signal section of the Wave window. If necessary, undock the window and maximize the window for a larger view of the waveform.
2. Select Insert > Divider.
3. Enter DCM Signals in the Divider Name box.
4. Click OK.
5. Click and drag the newly created divider to above the CLKIN_IN signal.

After adding the DCM Signals divider, the waveform will look like Figure 4-4.

![Waveform After Adding DCM Signals Divider](image)

The waveforms have not been drawn for any of the newly added signals. This is because ModelSim did not record the data for these signals. By default, ModelSim records data only for the signals that have been added to the Wave window while the simulation is running. After new signals are added to the Wave window, you must rerun the simulation for the desired amount of time.

Rerunning Simulation

To rerun simulation in ModelSim:

1. Click the Restart Simulation icon.
2. In the Restart dialog box, click Restart.
3. At the ModelSim command prompt, enter run 2000 ns.
4. Press Enter.

![Restart Dialog Box](image)

![Entering the Run Command](image)

The simulation runs for 2000 ns. The waveforms for the DCM are now visible in the Wave window.

Analyzing the Signals

The DCM signals can be analyzed to verify that they work as expected. The CLK0_OUT needs to be 50 MHz and the CLKFX_OUT should be 26 MHz. The DCM outputs are valid only after the LOCKED_OUT signal is high; therefore, the DCM signals are analyzed only after the LOCKED_OUT signal has gone high.

ModelSim enables you to add cursors to measure the distance between signals. To measure the CLK0_OUT:

1. Select Add > Cursor twice to add two cursors.
2. Click and drag one cursor to the first rising edge transition on the CLK0_OUT signal after the LOCKED_OUT signal has gone high.
3. Click and drag the second cursor just to the right of the first.
4. Click the Find Next Transition icon twice to move the cursor to the next rising edge on the CLK0_OUT signal.

![Find Next Transition Icon](image)
5. Look at the bottom of the waveform for the distance between the two cursors. 
   The measurement should read 20000 ps. This converts to 50 MHz, which is the input 
   frequency from the test bench, which in turn should be the DCM CLK0 output.

6. Measure CLKFX_OUT using the same steps as above. The measurement should read 
   38462 ps. This comes out to approximately 26 MHz.

Saving the Simulation

The ModelSim simulator enables you to save the signals list in the Wave window after new 
signals or stimuli are added, and after simulation is rerun. The saved signals list can easily 
be opened each time the simulation is started.

To save the signals list:

1. In the Wave window, select **File > Save as**.
2. In the Save Format dialog box, rename the file name from the default wave.do to 
dcm_signal.do.
3. Click **Save**.

   After restarting the simulation, select **File > Load** in the Wave window to load this file.

Your behavioral simulation is complete. To implement the design, follow the steps in 
Chapter 5, “Design Implementation.”

Behavioral Simulation Using ISE Simulator

Follow this section of the tutorial if you have skipped the previous section, “Behavioral 
Simulation Using ModelSim.”

Now that you have a test bench in your project, you can perform behavioral simulation on 
the design using the ISE Simulator. ISE has full integration with the ISE Simulator. ISE 
enables ISE Simulator to create the work directory, compile the source files, load the 
design, and perform simulation based on simulation properties.

To select ISE Simulator as your project simulator:

1. In the Sources tab, right-click the device line (xc3s200-4ft256).
2. Select **Properties**.
3. In the Project Properties dialog box, select **ISE Simulator** in the Simulator field.

Locating the Simulation Processes

The simulation processes in ISE enable you to run simulation on the design using ISE 
Simulator. To locate the ISE Simulator processes:

1. In the Sources tab, select **Behavioral Simulation** in the Sources for field.
2. Select the test bench file (stopwatch_tb).
3. Click the + beside Xilinx ISE Simulator to expand the process hierarchy.
The following simulation processes are available:

- **Check Syntax**
  This process checks for syntax errors in the test bench.

- **Simulate Behavioral Model**
  This process starts the design simulation.

- **Generate Expected Simulation Results**
  This process is available only if you have a test bench waveform file from ISE Simulator’s Test Bench Waveform Editor. If you run this process, the ISE Simulator runs in the background to generate expected results and displays them in the Waveform Editor. See “Creating a Test Bench Waveform Using the Waveform Editor.”

### Specifying Simulation Properties

You will perform a behavioral simulation on the stopwatch design after you set some process properties for simulation.

ISE allows you to set several ISE Simulator properties in addition to the simulation netlist properties. To see the behavioral simulation properties, and to modify the properties for this tutorial:

1. In the Sources tab, select the test bench file (`stopwatch_tb`).
2. Click the + sign next to ISE Simulator to expand the hierarchy in the Processes tab.
3. Right-click the **Simulate Behavioral Model** process.
4. Select **Properties**.
5. In the Process Properties dialog box (Figure 4-9), set the Property display level to **Advanced**. This global setting enables you to now see all available properties.
6. Change the Simulation Run Time to **2000 ns**.
7. Click **Apply** and click **OK**.

*Note:* For a detailed description of each property available in the Process Property dialog box, click **Help**.
Performing Simulation

Once the process properties have been set, you are ready to run the ISE Simulator. To start the behavioral simulation, double-click `Simulate Behavioral Model`. ISE Simulator creates the work directory, compiles the source files, loads the design, and performs simulation for the time specified.

The majority of this design runs at 100 Hz and would take a significant amount of time to simulate. The first outputs to transition after RESET is released are the `seg_dp` and `AN[3:0]` around 327 uS. This is why the counter may seem like it is not working in a short simulation. For the purpose of this tutorial, only the DCM signals are monitored to verify that they work correctly.

Adding Signals

To view signals during the simulation, you must add them to the Waveform window. ISE automatically adds all the top-level ports to the Waveform window. Additional signals are displayed in the Sim Hierarchy window. The following procedure explains how to add additional signals in the design hierarchy. For the purpose of this tutorial, add the DCM signals to the waveform.

To add additional signals in the design hierarchy:

1. In the Sim Hierarchy window, click the + next to `stopwatch_tb stopwatch_tb` to expand the hierarchy.
2. Click the + next to `uut stopwatch` to expand the hierarchy.
Figure 4-10 shows the Sim hierarchy window for the Verilog flow. The graphics and the layout of the window for a schematic or VHDL flow may be different.

3. Click the + next to dcm1 in the Sim Hierarchy window.
4. Click and drag CLKIN_IN from the Sim Hierarchy window to the Waveform window.
5. Select the following signals:
   - RST_IN
   - CLKFX_OUT
   - CLK0_OUT
   - LOCKED_OUT
   To select multiple signals, hold down the Ctrl key.
6. Drag all the selected signals to the waveform.

Notice that the waveforms have not been drawn for the newly added signals. This is because ISE Simulator did not record the data for these signals. By default, ISE Simulator records data only for the signals that have been added to the waveform window while the simulation is running. Therefore, when new signals are added to the waveform window, you must rerun the simulation for the desired amount of time.

Rerunning Simulation

To rerun the simulation in ISE Simulation:
1. Click the Restart Simulation icon.

Figure 4-11: ISE Simulator Restart Simulation Icon
2. At the ISE Simulator command prompt in the Sim Console, enter \textbf{run 2000 ns} and press \textbf{Enter}.

The simulation runs for 2000 ns. The waveforms for the DCM are now visible in the Waveform window.

**Analyzing the Signals**

Now the DCM signals can be analyzed to verify that they work as expected. The CLK0\_OUT should be 50 MHz and the CLKFX\_OUT should be 26 MHz. The DCM outputs are valid only after the LOCKED\_OUT signal is high; therefore, the DCM signals are analyzed only after the LOCKED\_OUT signal has gone high.

ISE Simulator can add markers to measure the distance between signals. To measure the CLK0\_OUT:

1. If necessary, zoom in on the waveform.
2. Click the \textbf{Measure Marker} icon.
3. Place the marker on the first rising edge transition on the CLK0\_OUT signal after the LOCKED\_OUT signal has gone high.
4. Click and drag the other end of the marker to the next rising edge.
5. Look at the top of the waveform for the distance between the marker. The measurement should read 20.0 ns. This converts to 50 MHz, which is the input frequency from the test bench, which in turn is the DCM CLK0 output.
6. Measure CLKFX\_OUT using the same steps as above. The measurement should read 38.5 ns. This equals approximately 26 MHz.

Your behavioral simulation is complete. To implement the design, follow the steps in Chapter 5, “Design Implementation.”

**Creating a Test Bench Waveform Using the Waveform Editor**

This section demonstrates how to use the Waveform Editor. The Waveform Editor is a test bench creation tool in ISE. You can use the Waveform Editor to graphically enter stimuli, and to generate a VHDL test bench or Verilog test fixture. It is not necessary to follow this section if you have added the tutorial test bench to the project already.

\textit{Note:} The ISE Simulator Waveform Editor is available on Windows platforms only.

**Creating a Test Bench Waveform Source**

In this tutorial, create the test bench waveform for a sub-module only. The Waveform Editor can be used to generate stimuli for top-level designs as well.

To create a test bench with the ISE Simulator Waveform Editor:

1. Select \texttt{time\_cnt} in the Sources tab.
2. Select \textbf{Project > New Source}.
3. In the New Source Wizard, select \textbf{Test Bench Waveform} as the source type.
4. Type `time_cnt_tb`.
5. Click **Next**.

**Note:** In the Select dialog box, the `time_cnt` file is the default source file because it is selected in the Sources tab (step 1).
6. Click **Next**.
7. Click **Finish**.

The Waveform Editor opens in ISE. The Initialize Timing dialog box displays, and enables you to specify the timing parameters used during simulation. The Clock Time High and Clock Time Low fields together define the clock period for which the design must operate. The Input Setup Time field defines when inputs must be valid. The Output Valid Delay field defines the time after active clock edge when the outputs must be valid.

8. In the Initialize Timing dialog box, fill in the fields as follows:
   - Clock Time High: **10**
   - Clock Time Low: **10**
   - Input Setup Time: **5**
   - Output Valid Delay: **5**
9. Select the **GSR (FPGA)** from the Global Signals section.
10. Change the Initial Length of Test Bench to **3000**.
11. Click **Finish**.
Applying Stimulus

In the Waveform Editor, in the blue cell, you can apply a transition (high/low). The width of this cell is determined by the Input setup delay and the Output valid delay.

Enter the following input stimuli:

1. Click the CE cell at time 110 ns to set it high (CE is active high).
2. Click the CLR cell at time 150 ns to set it high.
3. Click the CLR cell at time 230 ns to set it low.

4. Click the Save icon in the toolbar.

The new test bench waveform source (time_cnt_tb.tbw) is automatically added to the project.

5. Select time_cnt_tb.tbw in the Sources tab.

6. Double-click Generate Expected Simulation Results in the Process tab.

The selected simulator runs in the background and displays the expected output values in the Waveform Editor.

7. Select File > Save to save the test bench waveform with the generated simulation results.

Now, when either Behavioral or Timing simulation is run, the simulation output is automatically checked against the expected result.
Chapter 5

Design Implementation

This chapter contains the following sections.

- “Overview of Design Implementation”
- “Getting Started”
- “Specifying Options”
- “Creating Partitions”
- “Creating Timing Constraints”
- “Translating the Design”
- “Using the Constraints Editor”
- “Using the Pin-out Area Constraints Editor (PACE)”
- “Mapping the Design”
- “Using Timing Analysis to Evaluate Block Delays After Mapping”
- “Placing and Routing the Design”
- “Using FPGA Editor to Verify the Place and Route”
- “Evaluating Post-Layout Timing”
- “Changing HDL with Partition”
- “Creating Configuration Data”
- “Creating a PROM File with iMPACT”
- “Command Line Implementation”

Overview of Design Implementation

Design Implementation is the process of translating, mapping, placing, routing, and generating a BIT file for your design. The Design Implementation tools are embedded in the ISETM software for easy access and project management.

This chapter is the first in the “Implementation-only Flow” and is an important chapter for the “HDL Design Flow” and the “Schematic Design Flow”.

This chapter demonstrates the ISE Implementation flow. The front-end design has already been compiled in an EDA interface tool. For details about compiling the design, see Chapter 2, “HDL-Based Design” or Chapter 3, “Schematic-Based Design.” In this chapter, you will be passing an input netlist (EDN, NGC) from the front-end tool to the back-end Design Implementation tools, and you will be incorporating placement constraints through a User Constraints File (UCF). You will add timing constraints later through the Constraints Editor and Pin-out Area Constraints Editor (PACE).
Getting Started

The tutorial design emulates a runner’s stopwatch. There are three inputs to the system: CLK, RESET and SRTSTP. This system generates three seven-bit outputs for output to three seven-segment LED displays.

Continuing from Design Entry

If you have followed the tutorial using either the HDL Design flow or the Schematic Design flow, you have created a project, design entry source files, and an EDIF netlist file.

If you do not have a stopwatch.ucf file in your project, create one as follows:

1. In the Sources tab, select the top-level source file stopwatch.
2. Select Project > New Source.
4. Type stopwatch.ucf as the file name.
5. Click Next.
6. Select stopwatch from the list.
7. Click Next.
8. Click Finish.

With a UCF in the project, you are now ready to begin this chapter. Skip to the “Specifying Options” section.

Starting from Design Implementation

If you are beginning the tutorial from this chapter, you will need to download the pre-synthesized design files provided on the Xilinx® website, create a project in ISE and then add the downloaded source files to the project.

1. Create an empty working directory named Watch.
2. Go to http://www.xilinx.com/support/techsup/tutorials/tutorials8.htm, and copy the pre-synthesized tutorial files (see Table 5-1) to your newly created working directory.

Table 5-1: Required Tutorial Files

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stopwatch.edn,</td>
<td>Input netlist file (EDIF)</td>
</tr>
<tr>
<td>stopwatch.edf or</td>
<td></td>
</tr>
<tr>
<td>stopwatch.ngc</td>
<td></td>
</tr>
<tr>
<td>ten_cnt.edn</td>
<td>Counter netlist file (EDIF)</td>
</tr>
<tr>
<td>stopwatch.ucf</td>
<td>User Constraints File</td>
</tr>
</tbody>
</table>
3. Open ISE.
   a. On a workstation, enter `ise &`
   b. On a PC, select `Start > Programs > Xilinx ISE 8.2i > Project Navigator`

4. Create a new project and add the EDIF netlist as follows:
   a. Select `File > New Project`
   b. Type `EDIF_Flow` for the Project Name.
   c. Select `EDIF` for the top_level SourceType.
   d. Click `Next`
   e. Select `stopwatch.edn` for the Input Design file.
   f. Select `stopwatch.ucf` for the Constraints file.
   g. Click `Next`
   h. Select the following:
      - `Spartan3` for the Device Family
      - `xc3s200` for the Device
      - `-4` for the Speed Grade, `ft256` for the Package
   i. Click `Next`
   j. Click `Finish`
   k. Copy the `ten_cnt.edn` file into the EDIF_Flow directory.

In the Sources tab, select the top-level module, `stopwatch.edf` or `stopwatch.edn`. This enables the design to be implemented.

### Specifying Options

This section describes how to set some properties for design implementation. The implementation properties control how the software maps, places, routes, and optimizes a design.

To set the implementation property options for this tutorial:

1. In the Sources tab, select the `stopwatch` top-level file.
2. In the Processes tab, right-click the `Implement Design` process.
3. Select `Properties` from the right-click menu.
The Process Properties dialog box provides access to the Translate, Map, Place and Route, Simulation, and Timing Report properties. You will notice a series of categories, each contains properties for a different aspect of design implementation.

4. Ensure that you have set the Property display level to **Advanced**. This setting is in the lower, right-hand corner of the dialog box. This global setting enables you to see all available properties.

5. Click the **Post-Map Static Timing Report Properties** category.

6. Change Report Type to **Verbose Report**. This report will be generated after the Map process is completed.

7. Click the **Post-Place & Route Static Timing Report Properties** category.

8. Change Report Type to **Verbose Report**. This report will be generated after Place and Route is completed.

9. Click the **Place & Route Properties** category.

10. Change the Place & Route Effort Level (Overall) to **High**.
This option increases the overall effort level of Place and Route during implementation.

Creating Partitions

A partition is created for an instance in your logical design to indicate that the implementation for that instance should be reused when possible. Partitions can be nested hierarchically and be defined on any HDL module instance in the design. In Verilog, the partition is set on the module instance and for VHDL, the partition is set on the entity architecture. A module with multiple instances can have multiple partitions—a partition on each instance. The top level of the HDL design has a default partition.

Partitions do not need ranges for implementation re-use, and logic can be at the top level partition. Partitions automatically detect input source changes, including HDL changes and certain constraint changes. Partitions also detect command line changes, such as effort levels on implementation tools, and only the effected partitions are re-implemented.

To enable partitions for this design:

1. In the Sources tab, select **TIMECNT_1** module and right-click on it.
2. Select **New Partition** from the menu.
3. Select the **LEDCONTROL_1** module.
4. Right-click and select **New Partition**.

   The Preserve status is set to *inherit*, which gets the status from the top level partition. The top level partition is set to *routing* by default. The preserve status can be changed to *Routing*, *Placement*, or *Synthesis*.

   11. Click **OK** to exit the Process Properties dialog box.
Creating Timing Constraints

The User Constraints File (UCF) provides a mechanism for constraining a logical design without returning to the design entry tools. However, without the design entry tools, you must understand the exact syntax needed to define constraints. The Constraints Editor and Pinout Area Constraints Editor (PACE) are graphical tools that enable you to enter timing and pin location constraints.

To launch the Constraints Editor:

1. In the Processes tab, expand the User Constraints hierarchy.
2. Double-click Create Timing Constraints.

![Create Timing Constraints Process](image)

Figure 5-3: Create Timing Constraints Process

This automatically runs the Translate step, which is discussed in the following section. Then the Constraints Editor opens.

Translating the Design

ISE manages the files created during implementation. The ISE tools use the settings that you specified in the Process Properties dialog box. This gives you complete control over how a design is processed. Typically, you set your options first. You then run through the entire flow by double-clicking Implement Design. This tutorial illustrates the implementation, one step at a time.

During translation, the NGDBuild program performs the following functions:

- Converts input design netlists and writes results to a single merged NGD netlist. The merged netlist describes the logic in the design as well as any location and timing constraints.
- Performs timing specification and logical design rule checks.
- Adds the User Constraints File (UCF) to the merged netlist.
Using the Constraints Editor

When you run the Create Timing Constraints process, Translate is run and ISE launches the Constraints Editor.

The Constraints Editor enables you to:

- Edit constraints previously defined in a UCF file.
- Add new constraints to your design.

Input files to the Constraints Editor are:

- **NGD (Native Generic Database) File**
  The NGD file serves as input to the mapper, which then outputs the physical design database, an NCD (Native Circuit Description) file.

- **Corresponding UCF (User Constraint File)**
  By default, when the NGD file is opened, an existing UCF file with the same base name as the NGD file is used. Alternatively, you can specify the name of the UCF file.

The Constraints Editor generates a valid UCF file. The Translate step (NGDBuild) uses the UCF file, along with design source netlists, to produce a newer NGD file, which incorporates the changes made. The Map program (the next section in the design flow) then reads the NGD. In this design, the `stopwatch.ngd` and `stopwatch.ucf` files are automatically read into the Constraints Editor.

In the following section, a PERIOD and TIMEGRP OFFSET IN constraint will be written in the UCF and used during implementation. The Global tab appears in the foreground of the Constraints Editor window. This window automatically displays all the clock nets in your design, and enables you to define the associated period, pad to setup, and clock to pad values. Note that many of the internal names will vary depending on the design flow and synthesis tool used.

![Figure 5-4: Constraints Editor - Global Tab](image-url)
In the Constraints Editor, edit the constraints as follows:

1. Double-click the Period cell on the row associated with the clock net CLK. The Clock Period dialog box opens.

2. For the Clock Signal Definition, verify that **Specific Time** is selected. This enables you to define an explicit period for the clock.

3. Enter a value of **20.0** in the Time field.

4. Verify that **ns** is selected from the Units drop-down list.

![Figure 5-5: PERIOD Constraint Values](image1)

5. For the Input Jitter section, enter a value of **60** in the Time field.

6. Verify that **ps** is selected from the Units drop-down list.

![Figure 5-6: INPUT JITTER Constraint Value](image2)

7. Click **OK**.

   The period cell is updated with the global clock period constraint that you just defined (with a default 50% duty cycle).

8. Select the **Ports** tab from the Constraints Editor window.

   A listing of the current ports is displayed on the left.

9. Select **SEG_A** in the Port Name Column.

10. Hold down the **Shift** key and select **SEG_G**.

    This selects the elements for creating a grouped offset.
11. In the Group Name field, type `display_grp`, and click **Create Group** to create the group.

![Figure 5-7: Creating a Grouped OFFSET](image)

12. In the Select Group drop-down list, select the group you just created.

13. Click **Clock to Pad**.

![Figure 5-8: Setting Constraints for the Grouped OFFSET](image)

The Clock to Pad dialog box opens.

14. Enter **5.0 ns** for the Timing Requirement.

15. Select **CLK** in the Relative to Clock Pad Net field.

![Figure 5-9: Clock to Pad Dialog Box](image)

16. Click **OK**
17. Select **File > Save**.
   
   The changes are now saved in the `stopwatch.ucf` file in your current working directory.

18. Select **File > Exit**.

---

### Using the Pin-out Area Constraints Editor (PACE)

Use the Pin-Out Area Constraints Editor (PACE) to add and edit the pin locations and area group constraints defined in the NGD file. PACE generates a valid UCF file. The Translate step uses this UCF file, along with the design source netlists, to produce a newer NGD file. The NGD file incorporates the changes made in the design and the UCF file from the previous section. PACE also places Global Logic at the Slice level with Block Ram, Digital Clock Managers (DCMs), Gigabit Transceivers (GTs), and BUFGs.

This section describes the creation of IOB assignments for several signals. PACE edits the UCF file by adding the newly created placement constraints.

1. In the Processes tab, click the `+` next to *Implement Design* to expand the process hierarchy.

2. Click the `+` next to *Translate*.

3. Double-click **Assign Package Pins Post-Translate**, located under the Translate process.

   **Note:** For an EDIF project, double-click **Assign Package Pins**, located under the User Constraints process.

   ![Processes for Source: “stopwatch”](image)

   **Figure 5-10:** **Edit Package Pin Placement**

   This process launches PACE.
4. In PACE, select the Package View tab. This view shows the graphical representation of the device package.

5. Select the Design Object List window. This window displays all the IOs in the design.

6. In the Design Object List window, scroll down to the nets that begin with “SEG_”.

7. In the Loc column, enter pin locations using the following values:
   - SEG_A → E14
   - SEG_B → G13
   - SEG_C → N15
   - SEG_D → P15
   - SEG_DP → P16
   - SEG_E → R16
   - SEG_F → F13
   - SEG_G → N16

Figure 5-11: Pin-Out Area Constraints Editor (PACE)
To place IOs in the Package Pin view using the drag and drop method:

8. From the Design Object List window, click and drag the following signals to the associated location in the Package Pin window:
   - CLK → T9
   - RESET → L13
   - STRTSTOP → M13

Note: If you are using a third-party synthesis tool, change LOC values for AN<0>, AN<1>, AN<2>, and AN<3> to d14, g14, f14, and e13, respectively.

9. Once the pins are locked down, select File > Save. The changes are saved in the stopwatch.ucf file in your current working directory.
10. In the Bus Delimiter dialog box, select the XST Defaults and select OK.
   
   **Note:** If you are using EDIF, this dialog will not appear.

11. To exit PACE, select File > Exit.

### Mapping the Design

Now that all implementation strategies have been defined (properties and constraints), continue with the implementation of the design.

1. In the Processes tab, right-click on Map and select Run.
   
   **Note:** This can also be accomplished by double-clicking Map.

2. Expand the Implement Design hierarchy to see the progress through implementation.

The design is mapped into CLBs and IOBs. Map performs the following functions:

- Allocates CLB and IOB resources for all basic logic elements in the design.
- Processes all location and timing constraints, performs target device optimizations, and runs a design rule check on the resulting mapped netlist.

Each step generates its own report as shown in the following table.

#### Table 5-2: Reports Generated by Map

<table>
<thead>
<tr>
<th>Translation Report</th>
<th>Includes warning and error messages from the translation process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map Report</td>
<td>Includes information on how the target device resources are allocated, references to trimmed logic, and device utilization.</td>
</tr>
<tr>
<td>All NGDBUILD and MAP Reports</td>
<td>For detailed information on the Map reports, refer to the Development System Reference Guide. This Guide is available with the collection of software manuals and is accessible from ISE by selecting Help &gt; Software Manuals, or from the web at <a href="http://www.xilinx.com/support/sw_manuals/xilinx8/">http://www.xilinx.com/support/sw_manuals/xilinx8/</a>.</td>
</tr>
</tbody>
</table>
To view a report:

1. Expand the Translate or Map hierarchy.
2. Double-click a report, such as Translation Report or Map Report.

3. Review the report. Look for Warnings, Errors, and Information (INFO).

Using Timing Analysis to Evaluate Block Delays After Mapping

After the design is mapped, evaluate the Logic Level details in the Post-Map Static Timing Report to evaluate the logical paths in the design. Evaluation verifies that block delays are reasonable given the design specifications. Because the design is not yet placed and routed, actual routing delay information is not available. The timing report describes the logical block delays and estimated routing delays. The net delays provided are based on an optimal distance between blocks (also referred to as unplaced floors).

Estimating Timing Goals with the 50/50 Rule

For a preliminary indication of how realistic your timing goals are, evaluate the design after the map stage. A rough guideline (known as the 50/50 rule) specifies that the block delays in any single path make up approximately 50% of the total path delay after the design is routed. For example, a path with 10 ns of block delay should meet a 20 ns timing constraint after it is placed and routed.

If your design is extremely dense, the Post-Map Static Timing Report provides a summary analysis of your timing constraints based on block delays and estimates of route delays. This analysis can help to determine if your timing constraints are going to be met. This report is produced after Map and prior to Place and Route (PAR).

Report Paths in Timing Constraints Option

Use the Post-Map Static Timing Report to determine timing violations that may occur prior to running PAR. Since you defined timing constraints for the stopwatch design, the timing report will display the path for each of the timing constraints.

To view the Post-Map Static Timing Report and review the PERIOD Constraints that were entered earlier:

1. In the Processes tab, click the + next to Map to expand the process hierarchy.
2. Double-click **Generate Post-Map Static Timing**.
3. To open the Post-Map Static Timing Report, double-click **Analyze Post-Map Static Timing Report**.

Timing Analyzer automatically launches and displays the report.

![Figure 5-16: Post-Map Static Timing Report Process](image)

At the top of this report, you will find the period timing constraint and the minimum period obtained by the tools after mapping. The report contains only three paths per timing constraint, and as a result, you can see a breakdown of the first three paths which contains the component and routing delays.

Notice that the report displays the percentage of logic versus the percentage of routing at the end of each path. The unplaced floors listed are estimates (indicated by the letter “e” next to the net delay) based on optimal placement of blocks.

4. To exit Timing Analyzer, select **File > Exit**.

Even if you do not generate a timing report, PAR still processes a design based on the relationship between the block delays, floors, and timing specifications for the design.

For example, if a PERIOD constraint of 8 ns is specified for a path, and there are block delays of 7 ns and unplaced floor net delays of 3 ns, PAR stops and generates an error message. In this example, PAR fails because it determines that the total delay (10 ns) is greater than the constraint placed on the design (8 ns). The Post-Map Static Timing Report will list any pre-PAR timing violations.

**Placing and Routing the Design**

After the mapped design is evaluated, the design can be placed and routed.

One of two place-and-route algorithms is performed during the Place & Route (PAR) process:

- **Timing Driven PAR**
  
  PAR is run with the timing constraints specified in the input netlist and/or in the constraints file.

- **Non-Timing Driven PAR**
  
  PAR is run, ignoring all timing constraints.

Since you defined timing constraints earlier in this chapter, the Place & Route (PAR) process performs timing driven placement and routing.

1. To run PAR, in the Processes tab, double-click **Place & Route**.
To review the reports that are generated after the Place & Route process is completed:

2. Click the + next to Place & Route to expand the process hierarchy.

3. Double-click **Place & Route Report**.

   **Note:** You can also display and examine the **Pad Report** and **Asynchronous Delay Report**.

### Table 5-3: Reports Generated by PAR

<table>
<thead>
<tr>
<th>Report</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Place &amp; Route Report</strong></td>
<td>Provides a device utilization and delay summary. Use this report to verify that the design successfully routed and that all timing constraints were met.</td>
</tr>
<tr>
<td><strong>Pad Report</strong></td>
<td>Contains a report of the location of the device pins. Use this report to verify that pins locked down were placed in the correct location.</td>
</tr>
<tr>
<td><strong>Asynchronous Delay Report</strong></td>
<td>Lists all nets in the design and the delays of all loads on the net.</td>
</tr>
<tr>
<td><strong>All PAR Reports</strong></td>
<td>For detailed information on the PAR reports, refer to the Development System Reference Guide. This Guide is available with the collection of software manuals and is accessible from ISE by selecting Help &gt; Online Documentation, or from the web at <a href="http://www.xilinx.com/support/sw_manuals/xilinx8/">http://www.xilinx.com/support/sw_manuals/xilinx8/</a>.</td>
</tr>
</tbody>
</table>

## Using FPGA Editor to Verify the Place and Route

Use the FPGA Editor to display and configure Field Programmable Gate Arrays (FPGAs). The FPGA Editor reads and writes Native Circuit Description (NCD) files, Macro files (NMC) and Physical Constraints Files (PCF).

Use FPGA Editor to:

- Place and route critical components before running the automatic place-and-route tools.
- Finish placement and routing if the routing program does not completely route your design.
- Add probes to your design to examine the signal states of the targeted device. Probes are used to route the value of internal nets to an IOB (Input/Output Block) for analysis during debugging of a device.
- Run the BitGen program and download the resulting bitstream file to the targeted device.
- View and change the nets connected to the capture units of an Integrated Logic Analyzer (ILA) core in your design.
To view the actual design layout of the FPGA:

1. Click the + next to Place & Route to expand the process hierarchy, and double-click View/Edit Routed Design (FPGA Editor).

2. In FPGA Editor, change the List Window from All Components to All Nets. This enables you to view all of the possible nets in the design.
3. Select the `clk_int` (Clock) net to see the fanout of the clock net.

![Clock Net](image)

*Figure 5-19: Clock Net*

4. To exit FPGA Editor, select **File > Exit**.

### Evaluating Post-Layout Timing

After the design is placed and routed, a Post Layout Timing Report is generated by default to verify that the design meets your specified timing goals. This report evaluates the logical block delays and the routing delays. The net delays are now reported as actual routing delays after the Place and Route process. To display this report:

1. Expand the Generate Post-Place & Route Timing hierarchy.
2. Double-click **Analyze Post-Place & Route Static Timing Report** to open the report in Timing Analyzer.

The following is a summary of the Post-Place & Route Static Timing Report for the stopwatch design:

- The minimum period value increased due to the actual routing delays.
- After the Map step, logic delay contributed to about 80% of the minimum period attained. The post-layout report indicates that the logical delay value decreased somewhat. The total unplaced floors estimate changed as well. Routing delay after PAR now equals about 31% of the period.
- The post-layout result does not necessarily follow the 50/50 rule previously described because the worst case path primarily includes component delays. After the design is mapped, block delays constitute about 80% of the period.
After place-and-route, the worst case path is mainly made up of logic delay. Since total routing delay makes up only a small percentage of the total path delay spread out across two or three nets, expecting this to be reduced any further is unrealistic. In general, you can reduce excessive block delays and improve design performance by decreasing the number of logic levels in the design.

3. Select **File > Exit** to close the Timing Analyzer.

### Changing HDL with Partition

Now that the design has been implemented, the next step is to update the design with an HDL change. The change will be in the `TIMECNT_1` module, so only that partition will need to be re-synthesized and re-implemented. The Synthesis, MAP, and PAR reports will show which partitions are updated and which ones are preserved.

1. Open the `TIMECNT_1` module in the text editor by double-clicking it in the Sources tab.
2. Make the following change according to your HDL language:
   - If you are using Verilog: On line 56, change the code from `mins_cnt <= 0;` to `mins_cnt <= 1;`
   - If you are using VHDL: On line 70, change the code from `mins_cnt <= "0000";` to `mins_cnt <= "0001";`
3. In the Processes tab, right-click on **Place & Route**.
4. Select **Run** from the menu.
   Notice that the implementation is faster with partitions, since the implementation tools only need to re-implement the `TIMECNT_1` module. The rest of the design is re-used.
5. In the Design Summary view, view the following reports:
   - Select the **Synthesis Report**, then select **Partitions Report**. Notice which partitions were preserved and which partitions were re-used.
   - Select the **MAP Report**, then select **Guide Report**. Notice which partitions were preserved and which partitions were re-used.
   - Select the **PAR Report**, then select **Partition Status**. Notice which partitions were preserved and which partitions were re-used.

### Creating Configuration Data

After analyzing the design through timing constraints in Timing Analyzer, you need to create configuration data. A configuration bitstream is created for downloading to a target device or for formatting into a PROM programming file.

In this tutorial, you will create configuration data for a Xilinx Serial PROM. To create a bitstream for the target device, set the properties and run configuration as follows:

1. Right-click the **Generate Programming File** process.
3. Click the **Startup Options** category.
4. Change the FPGA Start-Up Clock property from CCLK to **JTAG Clock**.
   
   **Note:** You can use CCLK if you are configuring Select Map or Serial Slave.

5. Click the **Readback Options** category.
6. Change the Security property to **Enable Readback and Reconfiguring**.
7. Click **OK** to apply the new properties.
8. In the Processes tab, double-click **Generate Programming File** to create a bitstream of this design. The BitGen program creates the bitstream file (in this tutorial, the *stopwatch.bit* file), which contains the actual configuration data.

9. Click the + next to Generate Programming File to expand the process hierarchy.

10. To review the Programming File Generation Report, double-click **Programming File Generation Report**. Verify that the specified options were used when creating the configuration data.

Creating a PROM File with iMPACT

To program a single device using iMPACT, all you need is a bitstream file. To program several devices in a daisy chain configuration, or to program your devices using a PROM, you must use iMPACT to create a PROM file. iMPACT accepts any number of bitstreams and creates one or more PROM files containing one or more daisy chain configurations.

In iMPACT, a wizard enables you to do the following:

- Create a PROM file.
- Add additional bitstreams to the daisy chain.
- Create additional daisy chains.
- Remove the current bitstream and start over, or immediately save the current PROM file configuration.

For this tutorial, create a PROM file in iMPACT as follows:

1. In the Processes tab, double-click **Generate PROM, ACE, JTAG File**, located under the Generated Programming File process hierarchy.
2. In the Welcome to iMPACT dialog box, select **Prepare A PROM File**.
3. Click **Next**.
4. In the Prepare PROM Files dialog box, set the following values:
   ♦ Under “I want to target a:”, select Xilinx PROM.
   ♦ Under PROM File Format, select MCS.
   ♦ For PROM file name, type stopwatch1.

5. Click Next.

6. In the Specify Xilinx Serial PROM Device dialog box, select Auto Select PROM.

7. Click Next.

8. In the File Generation Summary dialog box, click Finish.

9. In the Add Device File dialog box, click Add File and select the stopwatch.bit file.
   **Note:** You will receive a warning that the startup clock is being changed from jtag to CCLK.

10. Click No when you are asked if you would like to add another design file to the datastream.
11. When asked to generate a file now, click Yes.

iMPACT displays the PROM associated with your bit file.

12. To close iMPACT, select File > Exit.

This completes the Design Implementation chapter of the tutorial. For more information on this design flow and implementation methodologies, see the ISE Help, available from the ISE application by selecting Help > Help Topics.

With the resulting stopwatch.bit, stopwatch1.mcs and a MSK file generated along with the BIT file, you are ready for programming your device using iMPACT. For more information on programming a device, see the iMPACT Help, available from the iMPACT application by selecting Help > Help Topics.

---

**Command Line Implementation**

ISE allows a user to easily view and extract the command line arguments for the various steps of the implementation process. This allows a user to verify the options being used or to create a command batch file to replicate the design flow.

At any stage of the design flow you can look at the command line arguments for completed processes by double-clicking View Command Line Log File from the Design Entry Utilities process hierarchy in the Processes tab. This process opens a file named <source_name>.cmd_log in read-only mode.

To create an editable batch file, select File > Save As and enter the desired file name.

Sections of the Command Line Log File may also be copied from <source_name>.cmd_log using either the copy-and-paste method or the drag-and-drop method into a text file.

For a complete listing of command line options for most Xilinx executables, refer to the Development System Reference Guide. Command line options are organized according to implementation tools. This Guide is available with the collection of software manuals and is accessible from ISE by selecting Help > Software Manuals, or from the web at http://www.xilinx.com/support/sw_manuals/xilinx8/. Command line options may also be obtained by typing the executable name followed by the -h option at a command prompt.

Another useful tool for automating design implementation is XFLOW. XFLOW is a Xilinx command line tool that automates the Xilinx implementation and simulation flows. XFLOW reads a design file as input, flow and option files. For more information on XFLOW, refer to the “XFLOW” section in the Development System Reference Guide.
Timing Simulation

This chapter includes the following sections.

- “Overview of Timing Simulation Flow”
- “Getting Started”
- “Timing Simulation Using ModelSim”
- “Timing Simulation Using Xilinx ISE Simulator”

Overview of Timing Simulation Flow

Timing simulation uses the block and routing delay information from a routed design to give a more accurate assessment of the behavior of the circuit under worst-case conditions. For this reason, timing simulation is performed after the design has been placed and routed.

Timing (post-place and route) simulation is a highly recommended part of the HDL design flow for Xilinx® devices. Timing simulation uses the detailed timing and design layout information that is available after place and route. This enables simulation of the design, which closely matches the actual device operation. Performing a timing simulation in addition to a static timing analysis will help to uncover issues that cannot be found in a static timing analysis alone. To verify the design, the design should be analyzed both statically and dynamically.

In this chapter, you will perform a timing simulation using either the ModelSim simulator or the Xilinx ISE Simulator.

Getting Started

The following sections outline the requirements to perform this part of the tutorial flow.

Required Software

To simulate with ModelSim, you must have Xilinx ISE™ 8.2i and ModelSim simulator installed. Refer to Chapter 4, “Behavioral Simulation” for information on installing and setting up ModelSim. Simulating with the Xilinx ISE simulator requires that the ISE 8.2i software is installed.
Required Files

The timing simulation flow requires the following files:

- **Design Files (VHDL or Verilog)**
  
  This chapter assumes that you have completed Chapter 5, “Design Implementation,” and thus, have a placed and routed design. The NetGen tool will be used in this chapter to create a simulation netlist from the placed and routed design which will be used to represent the design during the Timing Simulation.

- **Test Bench File (VHDL or Verilog)**
  
  In order to simulate the design, a test bench is needed to provide stimulus to the design. You should use the same test bench that was used to perform the behavioral simulation. Please refer to the “Adding an HDL Test Bench” in Chapter 4 if you do not already have a test bench in your project.

- **Xilinx Simulation Libraries**
  
  For timing simulation, the SIMPRIM library is needed to simulate the design.

  To perform timing simulation of Xilinx designs in any HDL simulator, the SIMPRIM library must be set up correctly. The timing simulation netlist created by Xilinx is composed entirely of instantiated primitives, which are modeled in the SIMPRIM library.

  If you completed Chapter 4, “Behavioral Simulation”, the SIMPRIM library should already be compiled. For more information on compiling and setting up the Xilinx simulation libraries, see to “Xilinx Simulation Libraries” in Chapter 4.

Specifying a Simulator

To select either the desired simulator to simulate the stopwatch design, complete the following:

1. In the Sources tab, right-click the device line (xc3s200-4ft256) and select **Properties**.
2. In the Project Properties dialog box click the down arrow in the Simulator value field to display a list of simulators.

  **Note:** ModelSim simulators and the ISE Simulator are the only simulators that are integrated with Project Navigator. Selecting a different simulator (e.g. NC-Sim or VCS) will set the correct options for Netgen to create a simulation netlist for that simulator but Project Navigator will not directly open the simulator.

3. Select **ISE Simulator (VHDL/Verilog)** or **Modelsim** with the appropriate version and language in the Simulator value field.

Timing Simulation Using ModelSim

Xilinx ISE provides an integrated flow with the Mentor ModelSim simulator. ISE enables you to create work directories, compile source files, initialize simulation, and control simulation properties for ModelSim.

**Note:** To simulate with the ISE Simulator, skip to “Timing Simulation Using Xilinx ISE Simulator”. Whether you choose to use the ModelSim simulator or the ISE Simulator for this tutorial, the end result is the same.
Specifying Simulation Process Properties

To set the simulation process properties:

1. In the Sources tab, select **Post-Route Simulation** in the Sources for field.
2. Select the test bench file (*stopwatch_tb*).
3. In the Processes tab, click the + next to ModelSim Simulator to expand the process hierarchy.

*Note:* If the ModelSim Simulator processes do not appear, it means that either ModelSim is not selected as the Simulator in the Project Properties dialog box, or Project Navigator cannot find modelsim.exe.

If ModelSim is installed but the processes are not available, the Project Navigator preferences may not be set correctly. To set the ModelSim location, select **Edit > Preferences**, click the + next to ISE General to expand the ISE preferences, and click **Integrated Tools** in the left pane. In the right pane, under Model Tech Simulator, browse to the location of modelsim.exe file. For example,

```bash
c:\modeltech_xe\win32xoem\modelsim.exe.
```
4. Right-click **Simulate Post-Place & Route Model**.
5. Select **Properties**.
   The Process Properties dialog box displays.
6. Select the **Simulation Model Properties** category.
   The properties should appear as shown in Figure 6-1. These properties set the options that NetGen uses when generating the simulation netlist. For a description of each property, click the **Help** button.
7. Ensure that you have set the Property display level to **Advanced**.
   This global setting enables you to see all available properties.
For this tutorial, the default Simulation Model Properties are used.

8. Select the **Display Properties** category.

   This tab gives you control over the ModelSim simulation windows. By default, three windows open when timing simulation is launched from ISE. They are the Signal window, the Structure window, and the Wave window. For more details on ModelSim Simulator windows, refer to the *ModelSim User Guide*.

9. Select the **Simulation Properties** category.

   The properties should appear as shown in Figure 6-2. These properties set the options that ModelSim uses to run the timing simulation. For a description of each property, click the **Help** button.
10. In the Simulation Properties tab, set the Simulation Run Time property to **2000 ns**.

11. Click **OK** to close the Process Properties dialog box.

### Performing Simulation

To start the timing simulation, double-click **Simulate Post-Place and Route Model** in the Processes tab.

ISE will run NetGen to create the timing simulation model. ISE will then call ModelSim and create the working directory, compile the source files, load the design, and run the simulation for the time specified.

**Note:** The majority of this design runs at 100 Hz and would take a significant amount of time to simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

### Adding Signals

To view signals during the simulation, you must add them to the Wave window. ISE automatically adds all the top-level ports to the Wave window. Additional signals are displayed in the Signal window based on the selected structure in the Structure window.

There are two basic methods for adding signals to the Simulator Wave window:

- Drag and drop from the Signal/Object window.
- Highlight signals in the Signal/Object window and then select **Add > Wave > Selected Signals**.
The following procedure explains how to add additional signals in the design hierarchy. In this tutorial, you will be adding the DCM signals to the waveform.

**Note:** If you are using ModelSim version 6.0 or higher, all the windows are docked by default. All windows can be undocked by clicking the **Undock** icon.

1. In the Structure/Instance window, click the + next to uut to expand the hierarchy.

Figure 6-4 shows the Structure/Instance window for the Verilog flow. The graphics and the layout of the Structure/Instance window for a schematic or VHDL flow may appear different.

2. Click the Structure/Instance window and select **Edit > Find**.
3. Type in **X_DCM** in the search box and select **Entity/Module** in the Field section.
4. Once ModelSim locates X_DCM, select **X_DCM** and click on the signals/objects window. All the signal names for the DCM will be listed.
5. Select the Signal/Object window and select **Edit > Find**.
6. Type **CLKIN** in the search box and select the **Exact** checkbox.
7. Click and drag CLKIN from the Signal/Object window to the Wave window.
8. Click and drag the following signals from the Signal/Object window to the Wave window:
   - RST
   - CLKFX
   - CLK0
   - LOCKED

   **Note:** Multiple signals can be selected by holding down the Ctrl key. In place of using the drag and drop method select Add to Wave > Selected Signals.

Adding Dividers

Modelsim has the capability to add dividers in the Wave window to make it easier to differentiate the signals. To add a divider called DCM Signals:

1. Click anywhere in the Wave window.
2. If necessary, undock the window and then maximize the window for a larger view of the waveform.
3. Select **Insert > Divider**.
4. Enter **DCM Signals** in the Divider Name box.
5. Click and drag the newly created divider to above the CLKIN signal.

   **Note:** Stretch the first column in the waveform to see the signals clearly. The hierarchy in the signal name can also be turned off by selecting Tools > Options > Wave Preferences. In the Display Signal Path box, enter 2 and click OK.

The waveform should look as shown in **Figure 6-5**.

![Figure 6-5: The Resulting Waveform](image)
Notice that the waveforms have not been drawn for the newly added signals. This is because ModelSim did not record the data for these signals. By default, ModelSim will only record data for the signals that have been added to the Wave window while the simulation is running. Therefore, after new signals are added to the Wave window, you need to rerun the simulation for the desired amount of time.

Rerunning Simulation

To restart and re-run the simulation:

1. Click the **Restart Simulation** icon.

   ![Restart Simulation Icon](image)

   *Figure 6-6: Restart Simulation Icon*

   The Restart dialog box opens.

   ![Restart Dialog Box](image)

   *Figure 6-7: Restart Dialog Box*

   2. Click **Restart**.

   3. At the ModelSim command prompt, enter **run 2000 ns** and hit the **Enter** key.

   ![Entering the Run Command](image)

   *Figure 6-8: Entering the Run Command*

   The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in the Wave window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that it works as expected. The CLK0 needs to be 50 Mhz and the CLKFX should be 26 Mhz. The DCM signals should only be analyzed after the LOCKED signal has gone high. Until the LOCKED signal is high the DCM outputs are not valid.

ModelSim has the capability to add cursors to carefully measure the distance between signals.
To measure the CLK0:

1. Select Add > Cursor twice to place two cursors on the wave view.
2. Click and drag the first cursor to the rising edge transition on the CLK0 signal after the LOCKED signal has gone high.
3. Click and drag the second cursor to a position just right of the first cursor on the CLK0 signal.
4. Click the Find Next Transition icon twice to move the cursor to the next rising edge on the CLK0 signal.

Look at the bottom of the waveform to view the distance between the two cursors. The measurement should read 20000 ps. This converts to 50 Mhz, which is the input frequency from the testbench, which in turn should be the DCM CLK0 output.

Measure CLKFX using the same steps as above. The measurement should read 38462 ps. This equals approximately 26 Mhz.

Saving the Simulation

The ModelSim Simulator provides the capability of saving the signals list in the Wave window. Save the signals list after new signals or stimuli are added, and after simulation is rerun. The saved signals list can easily be loaded each time the simulation is started.

1. In the Wave window, select File > Save Format.
2. In the Save Format dialog box, rename the filename from the default wave.do to dcm_signal_tim.do.
3. Click Save.

After restarting the simulation, you can select File > Load in the Wave window to reload this file.

Your timing simulation is complete and you are ready to program your device by following Chapter 7, “iMPACT Tutorial.”
Timing Simulation Using Xilinx ISE Simulator

Follow this section of the tutorial if you have skipped the previous section, “Timing Simulation Using ModelSim.”

Specifying Simulation Process Properties

To set the simulation process properties:

1. In the Sources tab, select Post-Route Simulation in the Sources for field.
2. Select the test bench file (stopwatch_tb).
3. In the Processes tab, click the + next to Xilinx ISE Simulator to expand the process hierarchy.
4. Right-click Simulate Post-Place & Route Model.
5. Select Properties.
   The Process Properties dialog box displays.
   These properties set the options that NetGen uses when generating the simulation netlist. For a description of each property, click the Help button.
7. Ensure that you have set the Property display level to Advanced.
   This global setting enables you to now see all available properties.
   For this tutorial, the default Simulation Model Properties are used.
8. Select the ISE Simulator Properties category.
   The properties should appear as shown in Figure 6-11. These properties set the options the simulator uses to run the timing simulation. For a description of each property, click the Help button.
9. In the Simulation Properties tab, set the Simulation Run Time property to **2000 ns**.

![Simulation Properties](image)

**Figure 6-11: Simulation Properties**

10. Click **OK** to close the Process Properties dialog box.

### Performing Simulation

To start the timing simulation, double-click **Simulate Post-Place and Route Model** in the Processes tab.

When a simulation process is run, Project Navigator automatically runs NetGen to generate a timing simulation model from the placed and routed design. The ISE Simulator will then compile the source files, load the design, and run the simulation for the time specified.

**Note:** The majority of this design runs at 100 Hz and would take a significant amount of time to simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

### Adding Signals

To view signals during the simulation, you must add them to the waveform window. ISE automatically adds all the top-level ports to the waveform window. All available external (top-level ports) and internal signals are displayed in the Sim Hierarchy window.
The following procedure explains how to add additional signals in the design hierarchy. In this tutorial, you will be adding the DCM signals to the waveform.

**Note:** The Xilinx ISE Simulator 8.2 does not include signal search capability. This limitation makes locating internal signals difficult.

1. Select any signal in the Sim Hierarchy window.
2. Press the **L** key on your keyboard. The signal selection should find the next signal that begins with the letter **L**.
3. Continue pressing the **L** key until the LOCKED signal under the X_DCM component is selected.

Figure 6-12 shows the Sim Hierarchy window for the VHDL flow. The signal names and layout in the Sim Hierarchy window for a schematic or VHDL flow may appear different.

![Figure 6-12: Sim Hierarchy Window - VHDL Flow](image)

4. Click and drag LOCKED from the Sim Hierarchy window to the waveform window.
5. Click and drag the following X_DCM signals from the SIM Hierarchy window to the waveform window:
   - RST
   - CLKFX
   - CLK0
   - CLKIN

   *Note:* Multiple signals can be selected by holding down the **Ctrl** key.

### Viewing Full Signal Names

A signal name may be viewed with either the complete hierarchical name or by the short name which omits hierarchy information. To change the signal name display;

1. Right click the desired signal in the waveform window.
2. Select Long Name or Short Name as desired.

   *Note:* Stretch the first column in the waveform to see the signals clearly.

The waveform should appear as shown in **Figure 6-13**.

---

**Figure 6-13: The Resulting Waveform**

Notice that the waveforms have not been drawn for the newly added signals. This is because the ISE Simulator did not record the data for these signals. The ISE Simulator will only record data for the signals that have been added to the waveform window while the simulation is running. Therefore, after new signals are added to the waveform window, you need to rerun the simulation for the desired amount of time.
Rerunning Simulation

To restart and re-run the simulation:

1. Click the **Restart Simulation** icon.

![Figure 6-14: Restart Simulation Icon](image)

2. At the Sim Console command prompt, enter `run 2000 ns` and hit the **Enter** key.

    ![Figure 6-15: Entering the Run Command](image)

The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in the Wave window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that it does work as expected. The CLK0 needs to be 50 Mhz and the CLKFX should be 26 Mhz. The DCM signals should only be analyzed after the LOCKED signal has gone high. Until the LOCKED signal is high the DCM outputs are not valid.

ISE Simulator has the capability to add cursors to carefully measure the distance between signals.

To measure the CLK0:

1. Right click the wave window and select **Add Measure**. The cursor changes to an up-arrow pointer.
2. Click a rising edge transition on the CLK0 signal after the LOCKED signal has gone high. Two vertical markers are placed one the waveform.
3. Click and drag the second marker to the next rising edge on the CLK0 signal.

**Note:** You may need to Zoom In to place the markers precisely on the clock edge.

View the time value between the two markers to see the distance between the two clock edges. The measurement should read 20.0 ns. This converts to 50 Mhz, which is the input frequency from the testbench, which in turn should be the DCM CLK0 output.

Measure CLKFX using the same steps as above. The measurement should read 38.5 ns, this equals approximately 26 Mhz.

Your timing simulation is complete and you are ready to program your device by following Chapter 7, “iMPACT Tutorial.”
Chapter 7

iMPACT Tutorial

This chapter takes you on a tour of iMPACT, a file generation and device programming tool. iMPACT enables you to program through several parallel cables, including the Platform USB cable. iMPACT can create bit files, System ACE files, PROM files, and SVF/XSVF files. The SVF/XSVF files can be played backed without having to recreate the chain.

This tutorial contains the following sections:

- “Device Support”
- “Download Cable Support”
- “Configuration Mode Support”
- “Getting Started”
- “Creating a iMPACT New Project File”
- “Using Boundary Scan Configuration Mode”
- “Troubleshooting Boundary Scan Configuration”
- “Creating an SVF File”
- “Other Configuration Modes”

Device Support

The following devices are supported.

- Virtex™-E/-II/-II PRO/4/5
- Spartan™/-II/-IIE/XL/3/3E
- XC4000™/E/L/EX/XL/XLA/XV
- CoolRunner™XPLA3/-II
- XC9500™/XL/XV
- XC18V00P
- XCF00S
- XCF00P
Download Cable Support

Parallel Cable IV

The Parallel Cable connects to the parallel port and can be used to facilitate Slave Serial and Boundary-Scan functionality. For more information, go to http://www.xilinx.com/support, select Documentation > Data Sheets > Configuration Solutions > Configuration Hardware > Xilinx Parallel Cable IV.

Platform Cable USB

The USB Platform cable connects to the USB port and can be used to facilitate Slave Serial, and Boundary Scan functionality. For more information, go to http://www.xilinx.com/support, select Documentation > Data Sheets > Configuration Solutions > Configuration Hardware > Platform Cable USB.

MultiPRO Cable

The MultiPro cable connects to the parallel port and can be used to facilitate Desktop Configuration Mode functionality. For more information, go to http://www.xilinx.com/support, select Documentation > Data Sheets > Configuration Solutions > Configuration Hardware > MultiPRO Desktop Tool.

Configuration Mode Support

Impact currently supports the following configuration modes:

- Boundary Scan — FPGAs, CPLDs, and PROMs (18V00, XCFS, XCFP)
- Slave Serial — FPGAs (Virtex™/II/II PRO/-E/4/5 and Spartan™/II/II-E/3/3E)
- Select Map — FPGAs (Virtex™/II/II PRO/-E/4/5 and Spartan™/II/II-E/3/3E)
- Desktop — FPGAs (Virtex™/II/II PRO/-E/4/5 and Spartan™/II/II-E/3/3E)

Getting Started

Generating the Configuration Files

In order to follow this chapter, you must have the following files for the stopwatch design:

- a BIT file—a binary file that contains proprietary header information as well as configuration data.
- a MCS file—an ASCII file that contains PROM configuration information.
- a MSK file—a binary file that contains the same configuration commands as a BIT file, but that has mask data in place of configuration data. This data is not used to configure the device, but is used for verification. If a mask bit is 0, the bit should be verified against the bit stream data. If a mask bit is 1, the bit should not be verified. This file generated along with the BIT file.
These files are generated in Chapter 5, “Design Implementation.”

- The Stopwatch tutorial projects can be downloaded from http://www.xilinx.com/support/techsup/tutorials/tutorials8.htm. Download the project files for either the VHDL, Verilog or Schematic design flow.

Connecting the Cable

Prior to launching iMPACT, connect the parallel side of the cable to your computer’s parallel port, and connect the cable to the Spartan-3 Starter Kit demo board. Be sure that the board is powered.

Starting the Software

This section describes how to start the iMPACT software from ISE™ and how to run it stand-alone.

Opening iMPACT from Project Navigator

To start iMPACT from Project Navigator, double-click Configure Device (iMPACT) in the Processes tab in the Processes window (see Figure 7-1).

Opening iMPACT stand-alone

To open iMPACT without going through an ISE project, use one of the following methods.

- PC — Click Start > All Programs > Xilinx® ISE 8.2i > Accessories > iMPACT.
- PC, UNIX, or Linux — Type impact at a command prompt.
Creating a iMPACT New Project File

When iMPACT is initially opened, the iMPACT Project dialog box displays. This dialog box enables you to load a recent project or to create a new project.

To create a new project for this tutorial:
1. In the iMPACT Project dialog box, select create a new project (.ipf).
2. Click the Browse button.
3. Browse to the project directory and then enter stopwatch in the File Name field.
4. Click Save.
5. Click OK.

This creates a new project file in iMPACT. You are prompted to define the project, as described in the next section.

Using Boundary Scan Configuration Mode

For this tutorial, you will be using the Boundary Scan Configuration Mode. Boundary Scan Configuration Mode enables you to perform Boundary Scan Operations on any chain comprising JTAG compliant devices. The chain can consist of both Xilinx® and non-Xilinx devices; however, limited operations will be available for non-Xilinx devices. To perform operations, the cable must be connected and the JTAG pins, TDI, TCK, TMS, and TDO need to be connected from the cable to the board.

Specifying Boundary Scan Configuration Mode

After opening iMPACT, you are prompted to specify the configuration mode and which device you would like to program.

To select Boundary Scan Mode:
1. Select Configure Devices using Boundary-Scan (JTAG) and leave the selection box value of Automatically connect to a cable and identify Boundary-Scan chain.

Note: The selection box also gives you the option to Enter a Boundary Scan Chain, which enables you to then manually add devices to create chain. This option enables you to generate an SVF/XSVF programming file, and is discussed in a later section in this chapter. Automatically detecting and initializing the chain should be performed whenever possible.
2. Click **Finish**.

![Figure 7-3: Selecting automatic boundary scan from Wizard](image)

iMPACT will pass data through the devices and automatically identify the size and composition of the boundary scan chain. Any supported Xilinx device will be recognized and labeled in iMPACT. Any other device will be labeled as unknown. The software will then highlight each device in the chain and prompt you to assign a configuration file or BSDL file.

**Note:** If you were not prompted to select a configuration mode or automatic boundary scan mode, right-click in the iMPACT window and select **Initialize Chain**. The software will identify the chain if the connections to the board are working. Go to “Troubleshooting Boundary Scan Configuration” if you are having problems.
Assigning Configuration Files

After initializing a chain, the software prompts you for a configuration file (see Figure 7-4). The configuration file is used to program the device. There are several types of configuration files.

- A Bitstream file (*.bit, *.rbt, *.isc) is used to configure an FPGA.
- A JEDEC file (*.jed, *.isc) is used to configure a CPLD.
- A PROM file (*.mcs, .exo, .hex, or .tek) is used to configure a PROM.

When the software prompts you to select a configuration file for the first device (XC3S200):

1. Select the BIT file from your project working directory.
2. Click **Open**.
3. Click **OK**.

You should receive a warning stating that the startup clock has been changed to JtagClk.

**Note:** If a configuration file is not available, a Boundary Scan Description File (BSDL or BSD) file can be applied instead. The BSDL file provides the software with the necessary Boundary Scan information that allows a subset of the Boundary Scan Operations to be available for that device. To have ISE automatically select a BSDL file (for both Xilinx and non-Xilinx devices), select **Bypass** in the Assign New Configuration File dialog box.

![Figure 7-4: Selecting a Configuration File](image)
4. When the software prompts you to select a configuration file for the second device (XCF02S):
5. Select the MCS file from your project working directory.
6. Click **Open**.

### Saving the Project File

Once the chain has been fully described and configuration files are assigned, you should save your iMPACT Project File (IPF) for later use. To do this, select **File > Save Project As**. The Save As dialog box appears and you can browse and save your project file accordingly. To restore the chain after reopening iMPACT, select **File > Open Project** and browse to the IPF.

**Note:** Previous versions of ISE use Configuration Data Files (CDF). These files can still be opened and used in iMPACT. iMPACT Project Files can also be exported to a CDF.

### Editing Preferences

To edit the preferences for the Boundary Scan Configuration, select **Edit > Preferences**. This selection opens the window shown in Figure 7-5. Click **Help** for a description of the Preferences.

In this tutorial, keep the default values and click **OK**.

![Figure 7-5: Edit Preferences](image)

### Performing Boundary Scan Operations

You can perform Boundary Scan operations on one device at a time. The available Boundary Scan operations vary based on the device and the configuration file that was applied to the device. To see a list of the available options, right-click on any device in the chain. This brings up a window with all of the available options.
When you select a device and perform an operation on that device, all other devices in the chain are automatically placed in BYPASS or HIGHZ, depending on your iMPACT Preferences setting. (For more information about Preferences, see “Editing Preferences.”)

To perform an operation, right-click on a device and select one of the options. In this section, you will retrieve the device ID and run the programming option to verify the first device.

1. Right-click on the XC3S200 device.
2. Select **Get Device ID** from the right-click menu.

   ![Available Boundary Scan Operations for an XC3S200 Device](image1)

   *Figure 7-6: Available Boundary Scan Operations for an XC3S200 Device*

   The software accesses the IDCODE for this Spartan-3 device. The result is displayed in the log window (see Figure 7-7).

   ```
 // *** BATCH CMD : ReadIDcode -p 1
 Chain TCK freq = 0.
 Validating chain...
 Boundary-scan chain validated successfully.
 '1': IDCODE is '0000000100000010000000000100111'
 '1': IDCODE is '0144093' (in hex).
 '1': Manufacturer's ID = Xilinx xc3s200, Version: 0
   ```

   *Figure 7-7: Log Window Showing Result of Get Device ID*

3. Right-click on the XC3S200 device
4. Select **Program** from the right-click menu.

   The Program Options window appears (see Figure 7-8).
5. Select the **Verify** option.
   The Verify option enables the device to be readback and compared to the BIT file using the MSK file that was created earlier.

6. Click **OK** to begin programming.

   ![Figure 7-8: Program Options for XC3S200 Device](image)

   **Note:** The options available in the Program Options dialog box vary based on the device you have selected.

   After clicking **OK**, the Program operation begins and an operation status window displays. At the same time, the log window reports all of the operations being performed.

   ![Figure 7-9: Operation Status](image)
When the Program operation completes, a large blue message appears showing that programming was successful (see Figure 7-10). This message disappears after a couple of seconds.

![Program Succeeded](image)

*Figure 7-10: Programming Operation Completes*

Your design has been programmed and has been verified. The board should now be working and should allow you to start, stop and reset the runner’s stopwatch.

**Troubleshooting Boundary Scan Configuration**

**Verifying Cable Connection**

When an error occurs during a Boundary Scan operation, first verify that the cable connection is established and that the software autodetect function is working. If a connection is still not established after plugging the cable into the board and into your machine, right-click in a blank portion of the iMPACT window and select either **Cable Auto Connect** or **Cable Setup**. Cable Auto Connect will force the software to search every port for a connection. Cable Setup enables you to select the cable and the port to which the cable is connected.
When a connection is found, the bottom of the iMPACT window will display the type of cable connected, the port attached to the cable, and the cable speed (see Figure 7-11).

![Figure 7-11: Cable Connection Successful](image)

If a cable is connected to the system and the cable autodetection fails, refer to Xilinx Answer Record #15742. Go to [http://www.xilinx.com/support](http://www.xilinx.com/support) and search for “15742”.

### Verifying Chain Setup

When an error occurs during a Boundary Scan operation, verify that the chain is set up correctly and verify that the software can communicate with the devices. The easiest way to do this is to initialize the chain. To do so, right-click in the iMPACT window and select **Initialize Chain**. The software will identify the chain if the connections to the board are working.

If the chain cannot be initialized, it is likely that the hardware is not set up correctly or the cable is not properly connected. If the chain can be initialized, try performing simple operations. For instance, try getting the Device ID of every device in the chain. If this can be done, then the hardware is set up correctly and the cable is properly connected.

The debug chain can also be used to manually enter JTAG commands (see Figure 7-12). This can be used for testing commands and verifying that the chain is set up correctly. To use this feature, select **Debug > Start/Stop Debug Chain** in iMPACT.
Creating an SVF File

This section is optional and assumes that you have followed the “Using Boundary Scan Configuration Mode” section and have successfully programmed to a board. In this section, all of the configuration information is written to the SVF file.

iMPACT supports the creation of device programming files in three formats, SVF, XSVF, and STAPL. If you are using third-party programming solutions, you may need to set up your Boundary Scan chain manually and then create a device programming file. These programming files contain both programming instructions and configuration data, and they are used by ATE machines and embedded controllers to perform Boundary Scan operations. A cable normally does not need to be connected because no operations are being performed on devices.
Setting up Boundary Scan Chain

This section assumes that you are continuing from the previous sections of this chapter and already have the chain detected. If not, skip to “Manual JTAG chain setup for SVF generation” to define the chain manually.

JTAG chain setup for SVF generation

1. Select Output > SVF File > Create SVF File to indicate that you are creating a programming file.
2. Enter getid in the File Name field of the Create a New SVF File dialog box and click Save.
3. An informational message appears stating that all device operations will be directed to the .svf file. Click OK.

Manual JTAG chain setup for SVF generation

For this tutorial, you may skip this section if you completed the “Using Boundary Scan Configuration Mode.” section.

The Boundary-Scan chain can be manually created or modified as well. To do this,

1. Ensure that you are in Boundary Scan Mode (click the Boundary-Scan tab).
   You can now add one device at a time.
2. Right-click on an empty space in the iMPACT Boundary-Scan window and select Add Xilinx Device or Add Non-Xilinx device.
   An Add Device dialog box appears allowing you to select a configuration file.
3. Select stopwatch.bit and then click Open.
   The device is added where the large cursor is positioned. To add a device between existing devices, click on the line between them and then add the new device.
   Repeat steps 2 and 3 to add the stopwatch.mcs file to the chain.

Note: The boundary scan chain that you manually create in the software must match the chain on the board, even if you intend to program only some of the devices. All devices must be represented in the iMPACT window.

Writing to the SVF File

The process of writing to an SVF file is identical to performing Boundary Scan operations with a cable. You simply right-click on a device and select an operation. Any number of operations can be written to an SVF file.

In this section, you will be writing the device ID to the programming file for the first device, and performing further instructions for the second device.
To write the device ID:

1. Right-click the first device (XC3S200).
2. Select **Get Device ID** from the right-click menu.

![Figure 7-13: Selecting a Boundary Scan Operation](image)

The instructions that are necessary to perform a Get Device ID operation are then written to the file.

3. To see the results, select **View > View SVF-STAPL File**. Figure 7-14 shows what the SVF file looks like after the Get Device ID operation is performed.

```plaintext
// Created using Xilinx iMPACT Software [ISE Foundation Sim - 7.1j]
TRST OFF;
ENDER IDLE;
ENDER IDLE;
STATE RESET IDLE;
TIR 0:
HDR 0:
TDR 0:

HIR 0 TDI (ff) SMASK (ff) ;
HDR 1 TDI (00) SMASK (01) ;
//loading device with '1decode' instruction.
SDR 32 TDI (00000000) SMASK (ffffffff) TDO (f1414093) MASK (0fffffff) ;
//validating chain...
TIR 0:
HDR 0:
TDR 0:

SDR 28 TDI (0ffeaaa) SMASK (0fffffff) TDO (0aaa8101) MASK (0fffc307) ;
TIR 0:
HDR 0:
TDR 0:

SDR 24 TDI (ff) SMASK (ff) ;
HDR 1 TDI (00) SMASK (01) ;
//loading device with '1decode' instruction.
SDR 32 TDI (00000000) TDO (f1414093) ;
SDR 32 TDI (00000000) TDO (f1414093) ;
SDR 2 TDI (ff) ;

SDR 14 TDI (3fff) SMASK (3fff) ;
SDR 2 TDI (00) SMASK (03) ;
```

![Figure 7-14: SVF File that Gets a Device ID from the First Device in the Chain](image)
To write further instructions to the SVF for the second device:

1. Right-click the second device (XCF02S).
2. Select **Program** from the right-click menu.

3. Click **OK** in the Programming Properties window.

   The instructions and configuration data needed to program the second device are added to the SVF file.

---

**Stop Writing to the SVF**

After all the desired operations have been performed, you must add an instruction to close the file from further instructions. To stop writing to the programming file:

Select **Output > SVF File > Stop Writing to SVF File**.

To add other operations in the future, you can select **Output > SVF File > Append to SVF File**, select the SVF file and click **Save**.

---

**Playing back the SVF or XSVF file**

To play back the SVF file that you created to verify the instructions, you will

- Manually create a new chain.
- Assign the SVF file to the chain by right clicking and selecting **Add Xilinx Device** and selecting the SVF file in the search window.
- Right-click on the SVF file in the Boundary-Scan chain and select **Execute XSVF/SVF**.

---

**Other Configuration Modes**

**Slave Serial Configuration Mode**

Slave Serial Configuration mode allows you to program a single Xilinx device or a serial chain of Xilinx devices. To use the Slave Serial Configuration Mode, double-click Slave Serial in the iMPACT Modes window.
SelectMAP Configuration Mode

With iMPACT, Select MAP Configuration mode allows you to program up to three Xilinx devices. The devices are programmed one at a time and are selected by the assertion of the correct CS pin. To use the Select MAP Configuration Mode, double click Select MAP in the iMPACT Modes window. Only the MultiPRO cable can be used for Select MAP Configuration.

*Note:* These modes cannot be used with the Spartan-3 Starter Kit.